Abstract Title:

Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii.

Abstract Source:

Eur J Clin Microbiol Infect Dis. 2018 Mar ;37(3):443-454. Epub 2018 Jan 20. PMID: 29353377

Abstract Author(s):

Ali Mohammadi Bardbari, Mohammad Reza Arabestani, Manoochehr Karami, Fariba Keramat, Hossein Aghazadeh, Mohammad Yousef Alikhani, Kamran Pooshang Bagheri

Article Affiliation:

Ali Mohammadi Bardbari


The rapid increase of drug resistance and failure of available antibiotics to treat biofilm-associated infections is of great health concern. Accordingly, our study aimed to evaluate the synergistic antibacterial, biofilm inhibitory, and biofilm removal activities of melittin in combination with colistin, imipenem, and ciprofloxacin against multidrug-resistant (MDR) strong biofilm producer Acinetobacter baumannii isolates. The kinetics of biofilm formation were evaluated for the isolates for 144 h. Minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs), minimum biofilm inhibitory concentrations (MBICs), and biofilm removal activities for melittin and combinations with antibiotics were determined. Inhibition of biofilm-associated protein (bap) expression by melittin was evaluated with real-time polymerase chain reaction (PCR). Field emission scanning electron microscopy (FE-SEM) was used to visualize the effect of synergism on the inhibition of biofilm production. The geometric means of the fractional inhibitory concentration index (FICi) for melittin-colistin, melittin-imipenem, and melittin-ciprofloxacin combinations were calculated as 0.31, 0.24, and 0.94, respectively. Comparing the geometric means of the removal activity for melittin, colistin, imipenem, and combinations of them in both 6 and 24 h showed a significant difference between the groups (p-value< 0.05). Exposure to melittin induced a statistically significant downregulation of bap mRNA levels in all isolates at sub-MIC doses. Analysis of the FE-SEM results demonstrated that the synergism of melittin-colistin at 0.125-0.25 μg inhibited biofilm formation completely. In conclusion, our findings indicate that melittin possesses considerable potential for use in combination with colistin and imipenem to treat infections caused by MDR strong biofilm producer A. baumannii isolates.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.