Abstract Title:

Honokiol exerts protective effects on neural myelin sheaths after compressed spinal cord injury by inhibiting oligodendrocyte apoptosis through regulation of ER-mitochondrial interactions.

Abstract Source:

J Spinal Cord Med. 2021 Apr 8:1-10. Epub 2021 Apr 8. PMID: 33830903

Abstract Author(s):

Yong Tan, Haijun Yu, Shanquan Sun, Shengwei Gan, Rui Gong, Ke-Jie Mou, Jun Xue, Shiye Xu, Jiangfeng Wu, Lan Ma

Article Affiliation:

Yong Tan


OBJECTIVE: To investigate the effect of honokiol on demyelination after compressed spinal cord injury (CSCI) and it's possible mechanism.

DESIGN: Animal experiment study.

SETTING: Institute of Neuroscience of Chongqing Medical University.

INTERVENTIONS: Total of 69 Sprague-Dawley (SD) rats were randomly divided into 3 groups: sham group (n=15), honokiol group (n=27) and vehicle group (n=27). After established CSCI model by a custom-made compressor successfully, the rats of sham group were subjected to the limited laminectomy without compression; the rats of honokiol group were subjected to CSCI surgery and intraperitoneal injection of 20 mg/kg honokiol; the rats of vehicle group were subjected to CSCI surgery and intraperitoneal injection of an equivalent volume of saline.The locomotor function of each group was assessed using the Basso, Beattie and Bresnahan (BBB) rating scale. The pathological changes of myelinated nerve fibers of spinal cord in 3 groups were detected by osmic acid staining and transmission electron microcopy (TME). Immunofluorescence and Western blot were used to research the experessions of active caspase-3, caspase-12, cytochrome C and myelin basic protein (MBP) respectively.

RESULTS: In the vehicle group, the rats became paralyzed and spastic after injury, and the myelin sheath became swollen and broken down along with decreased number of myelinated nerve fibers. Western blot analysis manifested that active caspase-3, caspase-12 and cytochrome C began to increase 1 d after injury while the expression of MBP decreased gradually. After intervened with honokiol for 6 days, compared with the vehicle group, the locomotor function and the pathomorphological changes of myelin sheath of the CSCD rats were improved with obviously decreased expression of active caspase-3, caspase-12 and cytochrome C.

CONCLUSIONS: Honokiol may improve locomotor function and protect neural myelin sheat from demyelination via prevention oligodendrocytes (OLs) apoptosis through mediate endoplasmic reticulum (ER)-mitochondria pathway after CSCI.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.