n/a
Article Publish Status: FREE
Abstract Title:

Honokiol suppresses proliferation and induces apoptosis via regulation of the miR‑21/PTEN/PI3K/AKT signaling pathway in human osteosarcoma cells.

Abstract Source:

Int J Mol Med. 2018 Apr ;41(4):1845-1854. Epub 2018 Jan 29. PMID: 29393336

Abstract Author(s):

Jiexiang Yang, Yonggen Zou, Dianmin Jiang

Article Affiliation:

Jiexiang Yang

Abstract:

Honokiol (HNK) is a small biphenolic compound, which exerts antineoplastic effects in various types of cancer. However, the mechanism underlying the antitumor effects of HNK in osteosarcoma (OS) cells is not yet fully understood. Emerging evidence has indicated that microRNAs (miRNAs/miRs) serve key roles in numerous pathological processes, including cancer. It has previously been reported that Chinese medicinal herbs harbor anticancer properties via modulating miRNA expression. Therefore, the present study aimed to determine whether HNK could suppress OS cell growth by regulating miRNA expression. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometric analysis were used to evaluate the cell proliferation and apoptosis in human OS cells after treatment with HNK, respectively. The results demonstrated that HNK inhibits proliferation and induces apoptosis of human OS cells in a dose‑dependent manner. Furthermore, HNK‑induced apoptosis was characterized by upregulation of proapoptotic proteins, including cleaved‑caspase‑3, cleaved‑poly (ADP‑ribose) polymerase and B‑cell lymphoma 2 (Bcl‑2)‑associated X protein, and downregulation of the anti‑apoptotic protein Bcl‑2. Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) verified that HNK was able to induce aberrant expression of miRNAsin human OS cells, and miR‑21 was one of the miRNAs that was most significantly downregulated. To further investigate miR‑21 function, the present study validated that HNK reduces miR‑21 levels in a dose‑dependent manner. In addition, restoration of miR‑21 expression abrogated the suppressive effects of HNK on OS cells. Luciferase assay and western blot analysis identified that miR‑21 inhibits the expression of phosphatase and tensin homolog (PTEN) by directly targeting its 3'-UTR. Notably, HNK was able to suppress the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway; however, it was reactivated by miR‑21 overexpression. Taken together, these data indicated that HNK may inhibit proliferation and induce apoptosis of human OS cells by modulating the miR‑21/PTEN/PI3K/AKT signaling pathway. Therefore, miR‑21 may be considered a potential therapeutic target for the treatment of osteosarcoma with HNK.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.