n/a
Article Publish Status: FREE
Abstract Title:

Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats.

Abstract Source:

Biomed Pharmacother. 2021 Mar ;135:111131. Epub 2020 Dec 28. PMID: 33383372

Abstract Author(s):

Lin Chen, Yanru Liu, Zhishu Tang, Xinbo Shi, Zhongxing Song, Fan Cao, Peifeng Wei, Min Li, Xiaohong Li, Dahai Jiang, Yafeng Yan, Ningjuan Yang

Article Affiliation:

Lin Chen

Abstract:

Hypericum perforatum L. (HP), a well-known natural medicine, has a potential effect on menopausal hypercholesterolemia. However, the effect of HP extract on gut microbiota and related metabolites, which play vital roles in metabolic disease occurrence, in the context of estrogen deficiency have not yet been reported. The aims of the present study were to investigate the effects of HP extract on gut microbial composition and related metabolite profiles in ovariectomized (OVX) rats and reveal the relationships between pathological indicators and alterations in both gut microbial composition at the genus level and metabolites. Body weight, serum parameters, liver lipids and histomorphology were determined. Microbial composition was analyzed using 16S rRNA sequencing. Fecal short-chain fatty acids (SCFAs) and serum bile acids were quantitatively measured. Correlations between pathological indicators and alteration in gut microbiota and metabolites were investigated using Spearman's rank correlation test. Gene expression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, cholesterol 7α-hydroxylase (CYP7A1) and cholesterol 27-hydroxylase (CYP27A1) in the liver and G protein-coupled receptors (GPCRs; GPR43 and GPR41), ZO-1 and occludin in the cecum were determined by PCR. Microbial composition and metabolite profiles were significantly changed in OVX rats compared with sham rats.Twelve bacterial genera, 5 SCFAs and 12 bile acids were identified as differential biomarkers. Differential genera, SCFAs and bile acids were closely associated with weight, total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C). In OVX rats, HP administration can significantly reverse the pathological symptoms of body weight gain, serum lipid disorders and hepatic steatosis, at the meanwhile, reestablish gut microbial composition and metabolite profiles. Moreover, HP administration significantly upregulated the levels of CYP7A1, GPR43 and GPR41. In conclusion, HP can ameliorate estrogen deficiency-induced hypercholesterolemia. The underlying mechanism may be associated with improvements in gut microbiota composition and the profile of related metabolites as well as increases in bile acid secretion.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.