Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Article Publish Status: FREE
Abstract Title:

α- and β-Naphthoflavone synergistically attenuate H2O2-induced neuron SH-SY5Y cell damage.

Abstract Source:

Exp Ther Med. 2017 Mar ;13(3):1143-1150. Epub 2017 Jan 13. PMID: 28450955

Abstract Author(s):

Yong Zhu, Fangfang Bi, Yanchun Li, Huiming Yin, Na Deng, Haiquan Pan, Dongfang Li, Bo Xiao

Article Affiliation:

Yong Zhu

Abstract:

Previous studies have demonstrated an association between neurological diseases and oxidative stress (OS). Naphthoflavone is a synthetic derivative of naturally occurring flavonoids that serves an important role in the treatment and prevention of OS-related diseases. The current study was designed to applyα- and β-Naphthoflavone individually and in combination to counteract the detrimental effects of OS on neurons in vitro. Neuronal SH-SY5Y cells were subjected to 20 µM H2O2, followed by exposure to 20 µM α-Naphthoflavone and/or 10 µM β-Naphthoflavone. Results indicated that α- and β-Naphthoflavone effectively antagonized the apoptosis-promoting effect of H2O2 on neuronal SH-SY5Y cells, and that β-Naphthoflavone significantly (P<0.05) reversed H2O2-inhibited cell viability. Notably, co-treatment ofα- and β-Naphthoflavone reversed the H2O2-induced apoptosis rate elevation and cell viability reduction. Further analysis demonstrated that H2O2 inhibited the activities of antioxidant enzymes including catalase, superoxide dismutase and glutathione peroxidase, but this was reversed by the co-treatment with α- and β-Naphthoflavone and selectively enhanced by the treatment with α- or β-Naphthoflavone. H2O2-stimulated p38 mitogen-activated protein kinase activation was repressed following treatment with α- and/or β-Naphthoflavone, along with a decreased expression of the apoptosis-related factors and inhibited caspase-3 activation. In conclusion, co-treatment with α- and β-Naphthoflavone minimized H2O2-led neuron damage compared with treatment with α- or β-Naphthoflavone, suggesting a synergetic effect between α- and β-Naphthoflavone. This indicates that utilizing α- and β-Naphthoflavone together in the clinical setting may provide a novel therapeutic for neurological disease.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.