Article Publish Status: FREE
Abstract Title:

Integrated Network Pharmacology Analysis and Experimental Validation to Reveal the Mechanism of Anti-Insulin Resistance Effects ofSeeds.

Abstract Source:

Drug Des Devel Ther. 2020 ;14:4069-4084. Epub 2020 Oct 2. PMID: 33116398

Abstract Author(s):

Qiong Huang, Rong Liu, Jing Liu, Qi Huang, Shao Liu, Yueping Jiang

Article Affiliation:

Qiong Huang


Background and Purpose: Insulin resistance (IR) is one of the factors that results in metabolic syndrome, type 2 diabetes mellitus and different aspects of cardiovascular diseases.seeds (MOS), traditionally used as an antidiabetic food and traditional medicine in tropical Asia and Africa, have exhibited potential effects in improving IR. To systematically explore the pharmacological mechanism of the anti-IR effects of MOS, we adopted a network pharmacology approach at the molecular level.

Methods: By incorporating compound screening and target prediction, a feasible compound-target-pathway network pharmacology model was established to systematically predict the potential active components and mechanisms of the anti-IR effects of MOS. Biological methods were then used to verify the results of the network pharmacology analysis.

Results: Our comprehensive systematic approach successfully identified 32 bioactive compounds in MOS and 44 potential targets of these compounds related to IR, as well as 37 potential pathways related to IR. Moreover, the network pharmacology analysis revealed that glycosidic isothiocyanates and glycosidic benzylamines were the major active components that improved IR by acting on key targets, such as SRC, PTPN1, and CASP3, which were involved in inflammatory responses and insulin-related pathways. Further biological research demonstrated that the anti-IR effects of MOS were mediated by increasing glucose uptake and modulating the expression of SRC and PTPN1.

Conclusion: Our study successfully predicts the active ingredients and potential targets of MOS for improving IR and helps to illustrate mechanism of action at a systemic level. This study not only provides new insights into the chemical basis and pharmacology of MOS but also demonstrates a feasible method for discovering potential drugs from traditional medicines.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.