n/a
Abstract Title:

Intranasal Carnosine Mitigatesα-Synuclein Pathology and Motor Dysfunction in the Thy1-aSyn Mouse Model of Parkinson's Disease.

Abstract Source:

ACS Chem Neurosci. 2021 07 7 ;12(13):2347-2359. Epub 2021 Jun 17. PMID: 34138535

Abstract Author(s):

Josephine M Brown, Lauren S Baker, Kim B Seroogy, Mary Beth Genter

Article Affiliation:

Josephine M Brown

Abstract:

Parkinson's disease (PD) is a debilitating neurodegenerative disorder. Early symptoms include motor dysfunction and impaired olfaction. Toxic aggregation ofα-synuclein (aSyn) in the olfactory bulb (OB) and substantia nigra pars compacta (SNpc) is a hallmark of PD neuropathology. Intranasal (IN) carnosine (2 mg/d for 8 weeks) was previously demonstrated to improve motor behavior and mitochondrial function in Thy1-aSyn mice, a model of PD. The present studies evaluated the efficacy of IN carnosine at a higher dose in slowing progression of motor deficits and aSyn accumulation in Thy1-aSyn mice. After baseline neurobehavioral assessments, IN carnosine was administered (0.0, 2.0, or 4.0 mg/day) to wild-type and Thy1-aSyn mice for 8 weeks. Olfactoryand motor behavioral measurements were repeated prior to end point tissue collection. Brain sections were immunostained for aSyn and tyrosine hydroxylase (TH). Immunopositive cells were counted using design-based stereology in the SNpc and OB mitral cell layer (MCL). Behavioral assessments revealeda dose-dependent improvement in motor function with increasing carnosine dose. Thy1-aSyn mice treated with 2.0 or 4.0 mg/d IN carnosine exhibited fewer aSyn-positive (aSyn(+)) cell bodies in the SNpc compared to vehicle-treated mice. Moreover, the number of aSyn(+) cell bodies in carnosine-treated Thy1-aSyn mice was reduced to vehicle-treated wild-type levels in the SNpc. Carnosine treatment did not affect the number of aSyn(+) cell bodies in the OB-MCL or the number of TH(+) cells in the SNpc. In summary, intranasal carnosine treatment decreased aSyn accumulation in the SNpc, which may underlie its mitigation of motor deficits in the Thy1-aSyn mice.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.