Abstract Title:

Effects of iron supplementation and depletion on hypoxic pulmonary hypertension: two randomized controlled trials.

Abstract Source:

JAMA. 2009 Oct 7;302(13):1444-50. PMID: 19809026

Abstract Author(s):

Thomas G Smith, Nick P Talbot, Catherine Privat, Maria Rivera-Ch, Annabel H Nickol, Peter J Ratcliffe, Keith L Dorrington, Fabiola León-Velarde, Peter A Robbins

Article Affiliation:

Department of Physiology, Anatomy, and Genetics, University of Oxford, Sherrington Bldg, Parks Road, Oxford OX1 3PT, England.

Abstract:

CONTEXT: Hypoxia is a major cause of pulmonary hypertension in respiratory disease and at high altitude. Recent work has established that the effect of hypoxia on pulmonary arterial pressure may depend on iron status, possibly acting through the transcription factor hypoxia-inducible factor, but the pathophysiological and clinical importance of this interaction is unknown. OBJECTIVE: To determine whether increasing or decreasing iron availability modifies altitude-induced hypoxic pulmonary hypertension. DESIGN, SETTING, AND PARTICIPANTS: Two randomized, double-blind, placebo-controlled protocols conducted in October-November 2008. In the first protocol, 22 healthy sea-level resident men (aged 19-60 years) were studied over 1 week of hypoxia at Cerro de Pasco, Peru (altitude 4340 m). In the second protocol, 11 high-altitude resident men (aged 30-59 years) diagnosed with chronic mountain sickness were studied over 1 month of hypoxia at Cerro de Pasco, Peru. INTERVENTION: In the first protocol, participants received intravenous infusions of Fe(III)-hydroxide sucrose (200 mg) or placebo on the third day of hypoxia. In the second protocol, patients underwent staged isovolemic venesection of 2 L of blood. Two weeks later, patients received intravenous infusions of Fe(III)-hydroxide sucrose (400 mg) or placebo, which were subsequently crossed over. MAIN OUTCOME MEASURE: Effect of varying iron availability on pulmonary artery systolic pressure (PASP) assessed by Doppler echocardiography. RESULTS: In the sea-level resident protocol, approximately 40% of the pulmonary hypertensive response to hypoxia was reversed by infusion of iron, which reduced PASP by 6 mm Hg (95% confidence interval [CI], 4-8 mm Hg), from 37 mm Hg (95% CI, 34-40 mm Hg) to 31 mm Hg (95% CI, 29-33 mm Hg; P = .01). In the chronic mountain sickness protocol, progressive iron deficiency induced by venesection was associated with an approximately 25% increase in PASP of 9 mm Hg (95% CI, 4-14 mm Hg), from 37 mm Hg (95% CI, 30-44 mm Hg) to 46 mm Hg (95% CI, 40-52 mm Hg; P = .003). During the subsequent crossover period, no acute effect of iron replacement on PASP was detected. CONCLUSION: Hypoxic pulmonary hypertension may be attenuated by iron supplementation and exacerbated by iron depletion. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00952302.

Study Type : Human Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.