n/a
Abstract Title:

Isoliquiritigenin protects against blood‑brain barrier damage and inhibits the secretion of pro-inflammatory cytokines in mice after traumatic brain injury.

Abstract Source:

Int Immunopharmacol. 2018 Dec ;65:64-75. Epub 2018 Oct 2. PMID: 30290368

Abstract Author(s):

Man Zhang, Yanqing Wu, Ling Xie, Chen-Huai Teng, Fang-Fang Wu, Ke-Bin Xu, Xiong Chen, Jian Xiao, Hong-Yu Zhang, Da-Qing Chen

Article Affiliation:

Man Zhang

Abstract:

Traumatic brain injury (TBI) caused by an external mechanical force acting on the brain is a serious neurological condition. Inflammation plays an important role in prolonging secondary tissue injury after TBI, leading to neuronal cell death and dysfunction. Isoliquiritigenin (ILG) is a flavonoid monomer with anti-inflammatory characteristic. Thus, we had investigated the potential protective effects of ILG on TBI-induced injuries and identified the mechanisms underlying it. Here, we have demonstrated that ILG preserves blood brain barrier (BBB) integrity in vivo, suppresses the activation of microglia and inflammatory responses in mice after TBI, consequently leading to neurofunctional deficits, brain oedema, structural damage, and macrophage infiltration. In vitro, ILG exerts anti-inflammatory effect, and upregulates tight junction proteins 120‑β‑catenin and occludin in SH‑SY5Y cells under oxygen glucose deprivation/reoxygenation (OGD/D) condition. Additionally, we found that PI3K/AKT/GSK‑3β signalling pathway is involved in ILG treatment for TBI. To further confirm it, we had used SC79 (ethyl 2‑amino‑6‑chloro‑4‑(1‑cyano‑2‑ethoxy‑2‑oxoethyl)‑4H‑chromene‑3‑carboxylate), an Akt specific activator, to activate Akt, we found that SC79 partially reduces the protective effect of ILG for TBI. Overall, our current study reveals the neuroprotective role of ILG on TBI-induced BBB damage, downregulated tight junction proteins via PI3K/AKT/GSK‑3β signalling pathway. Furthermore, ILG suppresses the secretion of pro-inflammatory cytokines after TBI through inhibiting the PI3K/AKT/GSK‑3β/NF‑κB signalling pathway. Our findings suggest that GSK‑3β is a key regulatory factor during TBI-induced secretion of inflammatory cytokines, neuronal apoptosis and destruction of BBB.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.