n/a
Abstract Title:

Kolaviron, a Garcinia kola biflavonoid complex, protects against ischemia/reperfusion injury: pertinent mechanistic insights from biochemical and physical evaluations in rat brain.

Abstract Source:

Neurochem Res. 2015 Apr ;40(4):777-87. Epub 2015 Feb 1. PMID: 25638229

Abstract Author(s):

Afolabi C Akinmoladun, Bolanle L Akinrinola, M Tolulope Olaleye, Ebenezer O Farombi

Article Affiliation:

Afolabi C Akinmoladun

Abstract:

The pathophysiology of stroke is characterized by biochemical and physical alterations in the brain. Modulation of such aberrations by therapeutic agents affords insights into their mechanism of action. Incontrovertible evidences that oxidative stress is involved in the pathophysiology of neurologic disorders have brought antioxidative compounds, especially plant phytochemicals, under increasing focus as potential remedies for the prevention and management of neurodegenerative diseases. Kolaviron, a biflavonoid complex isolated from Garcinia kola Heckel (Guttiferae) was evaluated for neuroprotectivity in brains of male Wistar rats submitted to bilateral common carotid artery occlusion-induced global ischemia/reperfusion injury (I/R). Animals were divided into six groups: sham treated, vehicle (I/R), 50 mg/kg kolaviron + I/R, 100 mg/kg kolaviron + I/R, 200 mg/kg kolaviron + I/R and quercetin (20 mg/kg i.p.) + I/R. The common carotid arteries were occluded for 30 min followed by 2 h of reperfusion. Relative brain weight and brain water content were determined and oxidative stress and neurochemical markers were also evaluated. I/R caused significant decreases in glutathione level and the activities of enzymic antioxidants, the sodium pump and acetylcholinesterase while significant increases were recorded in relative brain weight, brain water content, lipid peroxidation and the activities of glutamine synthetase and myeloperoxidase. There was a remarkable ablation of I/R induced oxidative stress, neurochemical aberrations and brain edema in animals pretreated with kolaviron. The results suggested that the protection afforded by kolaviron probably involved regulation of redox and electrolyte homeostasis as well as anti-inflammatory and antiexcitotoxic mechanisms.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.