Abstract Title:

Role of arginine in superficial wound healing in man.

Abstract Source:

Nitric Oxide. 2009 Nov-Dec;21(3-4):175-83. Epub 2009 Jul 26. PMID: 19638312

Abstract Author(s):

I B J G Debats, T G A M Wolfs, T Gotoh, J P M Cleutjens, C J Peutz-Kootstra, R R W J van der Hulst

Article Affiliation:

Department of Plastic, Reconstructive and Handsurgery, University Hospital Maastricht, PO Box 5800, 6202 AZ Maastricht, The Netherlands.


Arginine supplementation has been identified as advantageous in experimental wound healing. However, the mechanisms underlying this beneficial effect in tissue repair remain unresolved. Animal studies suggest that the beneficial role of arginine supplementation is mediated, at least in part through NO. The latter component mediates processes involved in tissue repair, including angiogenesis, epithelialization and collagen formation. This prospective study is performed to investigate arginine metabolism in acute surgical wounds in man. Expression of enzymes, known to be involved in arginine metabolism, was studied in donor sites of skin grafts of 10 hospitalized patients undergoing skin transplantation. Plasma and wound fluid levels of arginine metabolites (ornithine, citrulline, nitrate and nitrite = NOx) were measured using High Performance Liquid Chromatography. Expression of iNOS, eNOS, arginase-1 and arginase-2 was studied by immunohistochemistry in paraffin sections of skin tissue. Arginase-1 concentration was measured in plasma and wound fluid using ELISA. Arginase-2 was determined using Western blot analysis. We observed increased levels of citrulline, ornithine, NOx and arginase-1 in wound fluid when compared with plasma. Arginase-2 was expressed in both plasma and wound fluid and seemed higher in plasma. iNOS was expressed by neutrophils, macrophages, fibroblasts, keratinocytes and endothelial cells upon wounding, whereas eNOS reactivity was observed in endothelial cells and fibroblasts. Arginase-1 was expressed in neutrophils post-wounding, while arginase-2 staining was observed in endothelial cells, keratinocytes, fibroblasts, macrophages and neutrophils. For the first time, human data support previous animal studies suggesting arginine metabolism for an NO- as well as arginase-mediated reparation of injured skin.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.