n/a
Article Publish Status: FREE
Abstract Title:

Bioactive Membrane Immobilized with Lactoferrin for Modulation of Bone Regeneration and Inflammation.

Abstract Source:

Tissue Eng Part A. 2020 Apr 13. Epub 2020 Apr 13. PMID: 32324097

Abstract Author(s):

Jinkyu Lee, Jinki Lee, Sangmin Lee, Taufiq Ahmad, Sajeesh Kumar Madhurakkat Perikamana, Eun Mi Kim, Sang Won Lee, Heungsoo Shin

Article Affiliation:

Jinkyu Lee

Abstract:

Guided bone regeneration refers to the process in which bone defects could be regenerated by facilitated healing through the use of membranes, potentially with the delivery of osteoinductive molecules, however, the regeneration often failed due to inflammation during bone formation. In this study, we developed a membrane immobilized with lactoferrin to modulate both bone regeneration and inflammatory responses. Lactoferrin was immobilized on electrospun nanofibers (LF50) by exploiting an adhesive polydopamine coating method. When human adipose-derived stem cells (hADSCs) were seeded onto the nanofibers, the LF50 significantly increased the osteogenic differentiation. For example, the gene expression of osteopontin was 6.9 ± 2.3 times greater in the cells on LF50 than the cells on unmodified nanofibers without lactoferrin. In addition, the gene expression of tumor necrosis factor-alpha () of the macrophage cell line (RAW264.7) cultured on the LF50 was 0.3 ± 0.1 times reduced, indicating the lactoferrin was able to reduce inflammatory response. With implantation of nanofibers onmouse calvarial defects, the LF50 resulted in 60.9% ± 4.5% of new bone formation, which was six times greater than the results of other groups. Furthermore, when the fibers were implanted onto themouse subcutaneous model challenged with lipopolysaccharide and interferon-γ, the area of inflammatory tissue was significantly reduced in the LF50 implanted group as 0.6 ± 0.1 mmas compared with the control group (1.1 ± 0.1 mm). Taken together, the lactoferrin immobilization onto the nanofiber by polydopamine chemistry may be an effective delivery method for improving bone regeneration while regulating the inflammation. Impact statementcritical-sized bone reconstruction remains challenging due to the severe inflammation, which would be an unavoidable problem during surgical process. Therefore, the present study aims to develop a guided nanofibrous membrane immobilized with lactoferrin, which has dual functions with osteoinduction and anti-inflammation. The lactoferrin-immobilized fibers demonstrated significantly enhancedosteogenic differentiation of adipose-derived stem cells as well as decreased polarization of macrophage to M1 with relatively reduced amount than that reported from previous reports. We also found that the membrane improvedbone regeneration and decreased inflammatory tissue formation. Taken together, this system would be a new platform for successful bone regeneration.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.