n/a
Abstract Title:

A Vegetable, Launaea taraxacifolia, Mitigated Mercuric Chloride Alteration of the Microanatomy of Rat Brain.

Abstract Source:

J Diet Suppl. 2017 Nov 2 ;14(6):613-625. Epub 2017 Mar 1. PMID: 28471730

Abstract Author(s):

Olatunde Owoeye, Ganiyu O Arinola

Article Affiliation:

Olatunde Owoeye

Abstract:

Mercuric chloride is an environmental pollutant that affects the nervous systems of mammals. Oxidative damage is one of the mechanisms of its toxicity, and antioxidants should mitigate this effect. A vegetable with antioxidant activity is Launaea taraxacifolia, whose ethanolic extract (EELT) was investigated in this experiment to determine its effect against mercuric chloride (MC) intoxication in rat brain. Thirty male Wistar rats were randomly assigned into five groups (n = 6) as follows: control; propylene glycol; EELT (400 mg/kg bwt) for 19 days; MC (HgCl) (4 mg/bwt) for 5 days from day 15 of the experiment; EELT+ MC, EELT (400 mg/kg bwt) for 14 days + MC (4 mg/bwt) for 5 days from day 15 of the experiment. All treatments were administered orally by gastric gavage. Behavioral tests were conducted on the 20th day, and rats were euthanized the sameday. Blood and brain tissue were examined with regard to microanatomical parameters. Data were analyzed using analysis of variance with statistical significance set at p<.05. MC induced significant (19%) reduction of thrombocytes, which was ameliorated by 57% (p<.05) by pretreatment with EELT when compared with the MC group. Behavioral results showed that MC elicited significant reduction in transitions, rearings, forelimb grip strength, and latency of geotaxis. Histologically, MC induced alterations in the microanatomy of cerebral cortex, dentate gyrus, cornu ammonis 3, and cerebellum of rats. Treatment with EELT prior to MC administration significantly reduced the effect of MC on the hematological, behavioral, and ameliorated histological alterations of the brain. These findings may be attributed partially to the antioxidant property of EELT, which demonstrated protective effects against MC-induced behavioral parameters and alteration of microanatomy of rats' cerebral cortex, hippocampus, and cerebellum. In conclusion, EELT may be a valuable agent for further investigation in the prevention of acute neuropathy caused by inorganic mercury intoxication.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.