Article Publish Status: FREE
Abstract Title:

Long-Term Exposure to Oroxylin A Inhibits Metastasis by Suppressing CCL2 in Oral Squamous Cell Carcinoma Cells.

Abstract Source:

Cancers (Basel). 2019 Mar 12 ;11(3). Epub 2019 Mar 12. PMID: 30871117

Abstract Author(s):

Wei-Ting Ku, Jiun-Jia Tung, Tony Jer-Fu Lee, Kuo-Chu Lai

Article Affiliation:

Wei-Ting Ku


Oroxylin A (Oro-A), the main bioactive flavonoid extracted from, has been reported to inhibit migration in various human cancer cell models. In this study, we further explored the anti-migration effects of Oro-A on oral squamous cell carcinoma (OSCC) cells and investigated the underlying mechanisms. A 24-h (short-term) exposure of OSCC cells to non-cytotoxic concentrations (5⁻20 μM) of Oro-A significantly suppressed cell migration according to a wound-healing assay. Furthermore, a 30-day exposure (long-term) to Oro-A (20 μM), which did not exhibit a cytotoxic effect on OSCC cells, significantly suppressed cell migration more than short-term Oro-A exposure. To uncover the molecular mechanisms underlying the inhibitory effect of long-term Oro-A exposure on OSCC migration, a cDNA microarray and the Ingenuity software were used. Overall, 112 upregulated and 356 downregulated genes were identified in long-term Oro-A-exposed cells compared with untreated OSCC cells.Among them, 75 genes were reported to be associated with cancer cell migration. Consistent with the cDNA microarray results, we found that the expression levels of several cell migration-related genes, such as LCN2, ID-1, MDK, S100A9 and CCL2, were significantly decreased in long-term Oro-A-exposedOSCC cells using a quantitative real-time polymerase chain reaction (Q-PCR) assay. The Western blotting and enzyme-linked immunosorbent assay (ELISA) results also demonstrated that CCL2 expression at the mRNA and protein levels was significantly decreased in long-term Oro-A-exposed OSCC cells compared with untreated OSCC cells. Moreover, the expression levels of downstream CCL2 targets, including p-ERK1/2, NFκB, MMP2, and MMP9, were also decreased in long-term Oro-A-exposed OSCC cells. Further, Oro-A treatment suppressed in vivo metastasis. These results suggest that long-term Oro-A treatment inhibits metastasis via CCL2 signaling in OSCC cells.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.