Abstract Title:

Carbohydrate restriction and lactate transporter inhibition in a mouse xenograft model of human prostate cancer.

Abstract Source:

BJU Int. 2012 Mar 6. Epub 2012 Mar 6. PMID: 22394625

Abstract Author(s):

Howard S Kim, Elizabeth M Masko, Susan L Poulton, Kelly M Kennedy, Salvatore V Pizzo, Mark W Dewhirst, Stephen J Freedland

Article Affiliation:

Division of Urologic Surgery, Department of Surgery and the Duke Prostate Center Urology Section, Veterans Affairs Medical Center Department of Radiation Oncology and the Duke Comprehensive Cancer Center Department of Pathology, Duke University School of Medicine, Durham, NC, USA.


What's known on the subject? and What does the study add? It is known that both lactate inhibition and carbohydrate restriction inhibit tumour growth. What is unknown is whether the two work synergistically together. This study adds that though the combination of lactate inhibition and carbohydrate restriction did not synergistically slow tumour growth in our model, we confirmed that carbohydrate restriction started after tumour inoculation slowed tumour growth. Moreover, lactate inhibition resulted in changes in the tumour microenvironment that may have implications for future metabolic targeting of prostate cancer growth. OBJECTIVE:•  To determine if a no-carbohydrate ketogenic diet (NCKD) and lactate transporter inhibition can exert a synergistic effect on delaying prostate tumour growth in a xenograft mouse model of human prostate cancer. MATERIALS AND METHODS: •  120 nude athymic male mice (aged 6-8 weeks) were injected s.c. in the flank with 1.0 × 10(5) LAPC-4 prostate cancer cells. •  Mice were randomized to one of four treatment groups: Western diet (WD, 35% fat, 16% protein, 49% carbohydrate) and vehicle (Veh) treatment; WD and mono-carboxylate transporter-1 (MCT1) inhibition via α-cyano-4-hydroxycinnamate (CHC) delivered through a mini osmotic pump; NCKD (84% fat, 16% protein, 0% carbohydrate) plus Veh; or NCKD and MCT1 inhibition. •  Mice were fed and weighed three times per week and feed was adjusted to maintain similar body weights. •  Tumour size was measured twice weekly and the combined effect of treatment was tested via Kruskal-Wallis analysis of all four groups. Independent effects of treatment (NCKD vs WD and CHC vs Veh) on tumour volume were tested using linear regression analysis. •  All mice were killed on Day 53 (conclusion of pump ejection), and serum and tumoursections were analysed for various markers. Again, combined and independent effects of treatment were tested using Kruskal-Wallis and linear regression analysis, respectively. RESULTS: •  There were no significant differences in tumour volumes among the four groups (P= 0.09). •  When testing the independent effects of treatment, NCKD was significantly associated with lower tumour volumes at the end of the experiment (P= 0.026), while CHC administration was not (P= 0.981). However, CHC was associated with increased necrotic fraction (P<0.001). CONCLUSIONS:•  Differences in tumour volumes were observed only in comparisons between mice fed a NCKD and mice fed a WD. •  MCT1 inhibition did not have a significant effect on tumour volume, although it was associated with increased necrotic fraction.

Study Type : Transgenic Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.