Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

n/a
Abstract Title:

Lutein Induces Autophagy via Beclin-1 Upregulation in IEC-6 Rat Intestinal Epithelial Cells.

Abstract Source:

Am J Chin Med. 2017 ;45(6):1273-1291. PMID: 28893091

Abstract Author(s):

Chi-Jen Chang, Ji-Fan Lin, Chien-Yu Hsiao, Hsun-Hao Chang, Hsin-Ju Li, Hsun-Hsien Chang, Gon-Ann Lee, Chi-Feng Hung

Article Affiliation:

Chi-Jen Chang

Abstract:

Lutein is a carotenoid with anti-oxidant properties. Autophagy, an evolutionarily conserved catabolic cellular pathway for coping with stress conditions, is responsive to reactive oxygen species (ROS) and degrades damaged organelles. We previously demonstrated that lutein can induce anti-oxidant enzymes to relieve methotrexate-induced ROS stress. We therefore hypothesized that lutein, which activates ROS-scavenging enzymes, can also induce autophagy for cell survival. In this study, we demonstrated that lutein treatment attenuated the reduction in cell viability caused by H2O2. Lutein dose-dependently induced the processing of microtubule-associated protein light chain 3 (LC3)-II, an autophagy marker protein, and accumulation of LC3-positive puncta in rat intestinal IEC-6 cells. Furthermore, (a) direct observation of autophagosome formation through transmission electron microscopy, (b) upregulation of autophagy-related genes including ATG4A, ATG5, ATG7, ATG12, and beclin-1 (BENC1), and (c) increased BECN1/Bcl-2 ratio confirmed the induction of autophagy by lutein. The results revealed that bafilomycin-A1-induced inhibition of autophagy reduced cell viability and increased apoptosis in lutein-treated cells, indicating a protective role of lutein-induced autophagy. Lutein treatment also activated adenosine monophosphate-activated protein kinase (AMPK), c-Jun N-terminal kinase (JNK), and p-38, but had no effects on the induction of extracellular signal-related kinase or inhibition of mTOR; however, the inhibition of activated AMPK, JNK, or p-38 did not attenuate lutein-induced autophagy. Finally, increased BECN1 expression levels were detected in lutein-treated cells, and BECN1 knockdown abolished autophagy induction. These results suggest that lutein-induced autophagy was mediated by the upregulation of BECN1 in IEC-6 cells. We are the first to demonstrate that lutein induces autophagy. Elevated autophagy in lutein-treated IEC-6 cells may have a protective role against various stresses, and this warrants further investigation.

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.