n/a
Abstract Title:

Luteolin inhibits melanoma growth in vitro and in vivo via regulating ECM and oncogenic pathways but not ROS.

Abstract Source:

Biochem Pharmacol. 2020 Jul ;177:114025. Epub 2020 May 13. PMID: 32413425

Abstract Author(s):

John Schomberg, Zi Wang, Ahmed Farhat, Katherine L Guo, Jun Xie, Zhidong Zhou, Jing Liu, Bruce Kovacs, Feng Liu-Smith

Article Affiliation:

John Schomberg

Abstract:

Luteolin inhibited growth of several cancer cells in vitro in previous studies, with limited in vivo studies, and no comprehensive understanding of molecular mechanisms at genomics level. This study identified luteolin as an effective agent to inhibit melanoma cell growth in vitro and in vivo. Molecular studies and genomic profiling were used to identify the mechanism of action of luteolin in melanoma cells. As a ROS (reactive oxygen species) scavenger, luteolin unexpectedly induced ROS; but co-treatment with antioxidants NAC or mito-TEMPO did not rescue cell growth inhibition, although the levels of ROS levels were reduced. Next, we profiled luteolin-induced differentially expressed genes (DEGs) in 4 melanoma cell lines using RNA-Seq, and performed pathway analysis using a combination of bioinformatics software including PharmetRx which was especially effective in discovering pharmacological pathways for potential drugs. Our results show that luteolin induces changes in three main aspects: the cell-cell interacting pathway (extracellular matrix, ECM), the oncogenic pathway and the immune response signaling pathway. Based on these results, we further validated that luteolin was especially effective in inhibiting cell proliferation when cells were seeded at low density, concomitantly with down-regulation of fibronectin accumulation. In conclusion, through extensive DEG profiling in a total of 4 melanoma cell lines, we found that luteolin-mediated growth inhibition in melanoma cells was perhaps not through ROS induction, but likely through simultaneously acting on multiple pathways including the ECM (extracellular matrix) pathway, the oncogenic signaling and the immune response pathways. Further investigations on the mechanisms of this promising compound are warranted and likely result in application to cancer patients as its safety pharmacology has been validated in autism patients.

Study Type : Animal Study, In Vitro Study
Additional Links
Pharmacological Actions : Antiproliferative : CK(4773) : AC(3450)

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.