Article Publish Status: FREE
Abstract Title:

Mangiferin ameliorates acetaminophen-induced hepatotoxicity through APAP-Cys and JNK modulation.

Abstract Source:

Biomed Pharmacother. 2019 Jun 15 ;117:109097. Epub 2019 Jun 15. PMID: 31212128

Abstract Author(s):

Apu Chowdhury, Jihong Lu, Rumeng Zhang, Jahan Nabila, Hang Gao, Zhikang Wan, Isaac Adelusi Temitope, Xiaoxing Yin, Ying Sun

Article Affiliation:

Apu Chowdhury


An overdose of the most popular analgesic, acetaminophen (APAP), is one of the leading causes of acute liver failure. It is well established that glutathione is exhausted by APAP-reactive intermediate N‑acetyl‑p‑benzoquinone-imine (NAPQI). This leads to elevated phosphorylated-c-Jun N-terminal kinase (p-JNK), which further activates reactive oxygen species (ROS), initiates an inflammatory response, and finally leads to severe hepatic injury. The present study was conducted to investigate theprotective role of mangiferin (MAN), a naturally occurring xanthone and anti-oxidant, on APAP-induced hepatotoxicity. C57BL/6 mice were pretreated with or without MAN at 1 h prior to APAP challenge. MAN was administered at a dose of 12.5-50 mg/kg along with APAP at a dose of 400 mg/kg. According to the ALT/AST ratio, 25 mg/kg MAN was the most potent dose for further experiments. Serum ALT and AST depletion were observed in APAP + MAN (25 mg/kg)-treated mice at 6, 12, and 24 h. Early (1 h after APAP treatment) GSH depletion by APAP overdose was restored by MAN treatment, which reduced APAP-Cys adduct formation and promoted protection. p-JNK downregulation and AMPK activation were observed in MAN-treated mice, which could mechanistically reduce oxidative stress and inflammation. MAN up-regulated liver GSH and SOD and reduced lipid peroxidation. HO-1 protein and p47 phoxmRNA expression indicated that MAN regulated oxidative stress along with JNK deactivation. The expression of inflammatory response genes TNF-α, IL-6, MCP-1, CXCL-1, and CXCL-2 reached the basal levels after MAN treatment. mRNA, protein, and serum levels of IL-1β were reduced, and NF-κB expressionwas similar to that of the MAN-treated APAP mice. MAN post-treatment (1 h after APAP treatment) also protected the mice from hepatotoxicity. In conclusion, MAN had a protective and therapeutic role in APAP-induced hepatotoxicity by improving the metabolism of acetaminophen and APAP-Cys adduct formation followed by JNK-mediated oxidative stress and inflammation.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.