n/a
Abstract Title:

Permeability changes of cationic liposomes loaded with carbonic anhydrase induced by millimeter waves radiation.

Abstract Source:

Radiat Res. 2012 Nov ;178(5):437-46. Epub 2012 Sep 21. PMID: 22998228

Abstract Author(s):

Loreto Di Donato, Maria Cataldo, Pasquale Stano, Rita Massa, Alfonsina Ramundo-Orlando

Article Affiliation:

Loreto Di Donato

Abstract:

The interaction of millimeter wave radiation, in the 30-300 GHz range, with biological systems is a topic of great interest as many of the vibrational dynamics that occur in biochemical reactions of large macromolecules in living organisms fall in the 1-100 GHz range. Membranes and cellular organelles may have different ways of interacting with this radiation as well. In this article, we investigate the influence of 53.37 GHz of radiation on lipid membrane permeability by using cationic liposomes that contain dipalmitoylphosphatidylcholine (DPPC), cholesterol and stearylamine. Carbonic anhydrase (CA) is loaded inside the liposome and the substrate p-nitrophenyl acetate (p-NPA) is added in the bulk aqueous phase. Upon permeation across the lipid bilayer, the trapped CA catalyzes the conversion of the p-NPA molecules into products. Because the self-diffusion rate of p-NPA across intact liposomes is very low, the CA reaction rate expressed asΔA/min is used to track membrane permeability changes. A highly significant (P<0.0001) enhancement of the CA reaction rate, typically fromΔA/min = 0.0043 ± 0.0017 (n = 26) to ΔA/min = 0.0100 ± 0.0020 (n = 32) resulted at a low-level density power of 0.1 mW/cm(2). The enhancement of the CA reaction rate was observed at a lesser extent on liposomes with a larger diameter and, in turn with leaflets less bent. The different packing ofthe phospholipid bilayer-due to the higher curvature-could be a critical factor in eliciting membrane permeability changes indicating a possible role for water molecules bound to functional groups in the glycerol region. Since numerical dosimetry indicates that the temperature rise during the exposure was negligible, the observed effects cannot be attributed to heating of the samples.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.