Abstract Title:

miRNAs deregulation in serum of mice is associated with lung cancer related pathway deregulation induced by PM2.5.

Abstract Source:

Environ Pollut. 2019 Nov ;254(Pt A):112875. Epub 2019 Jul 17. PMID: 31377334

Abstract Author(s):

Jie Ning, Peiyuan Li, Boyuan Zhang, Bin Han, Xuan Su, Qian Wang, Xiurong Wang, Binghua Li, Hui Kang, Lixiao Zhou, Chen Chu, Ning Zhang, Yaxian Pang, Yujie Niu, Rong Zhang

Article Affiliation:

Jie Ning


Ambient fine particulate matter (PM2.5) as an environmental pollution has been associated with the lung cancer. However, the mechanism of epigenetics such as miRNAs deregulation between PM2.5-exposure and lung cancer has not been elucidated clearly. Twenty C57BL/6 mice were divided randomly into 2 groups and exposed to the filtered air (FA) and the concentrated air (CA), respectively. The FA mice were exposed to filtered air in chambers with a high-efficient particulate air filter (HEPA-filter), and the CA mice were exposed to concentration ambient PM2.5. The total duration of exposure was performed 6 h per day from December 1st, 2017 to January 27th, 2018. The mice exposed 900.21 μg/mPM2.5 for 6 h per day in CA chamber, which was nearly equaled to 225.05 μg/mfor 24-h calculatingly. After exposure, the serum miRNAs levels were detected by microarray. Genetic and pathological alterations in lung of mice with/without PM2.5 exposure were detected. 38 differential miRNAs in serum of mice were found after PM2.5 exposure for 8 weeks. Among of them, 13 miRNAs related with lung cancer were consistent in serum and lung of mice. The target genes of 13 deregulated miRNAs including CRK, NR2F2, VIM, RASSF1, CCND2, PRKCA, SIRT1, CDK6, MAP3K7, HIF1A, UBE2V2, ATG10, BAX, E2F1, RASSF5 and CTNNB1, could involve in the pathway of lung cancer developing. Compared with the FA group, the significantly increases of histopathological changes, ROS and DNA damage were observed in lung of mice in CA group. Our study suggested that miRNAs in serum could be identified as candidate biomarkers to predict the lung cancer development during early PM2.5 exposure.

Study Type : Animal Study

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.