Abstract Title:

A study of the distribution of aluminium in human placental tissues based on alkaline solubilization with determination by electrothermal atomic absorption spectrometry.

Abstract Source:

Metallomics. 2010 Sep ;2(9):621-7. Epub 2010 Aug 17. PMID: 21072353

Abstract Author(s):

Pamela C Kruger, Lawrence M Schell, Alice D Stark, Patrick J Parsons

Article Affiliation:

Laboratory of Inorganic and Nuclear Chemistry, Wadsworth Center, New York State Department of Health, Albany, NY 12201-0509, USA.

Abstract:

Aluminium (Al) is a nonessential element known to induce neurotoxic effects, such as dialysis dementia, in patients on hemodialysis, with compromised kidney function. The role of Al in the progression of some neurodegenerative diseases, such as Alzheimer's disease (AD), is controversial, and remains unclear. The effects of Al on other vulnerable populations, such as fetuses and infants, have been infrequently studied. In the present study, Al has been measured in human placenta samples, comprising∼160 each of placenta bodies, placenta membranes, and umbilical cords, using electrothermal atomic absorption spectrometry (ETAAS) after atmospheric pressure digestion with tetramethylammonium hydroxide (TMAH) and ethylenediaminetetraacidic acid (EDTA). The sensitivity, or characteristic mass (m(0)), for Al at the 309.3-nm line was found to be 30 ± 4 pg. The instrumental detection limit (IDL) (3s) for Al in solution was calculated as 0.72 μg L(-1) while the method detection limit (MDL) (3s) was 0.25 μg g(-1). Accuracy was assessed through analysis of quality control (QC) materials, including certified reference materials (CRMs), in-house reference materials (RMs), and spike recovery experiments, of varying matrices. Placental tissue analyses revealed geometric mean concentrations of approximately 0.5 μg g(-1) Al in placenta bodies (n = 165) and membranes (n = 155), while Al concentrations in umbilical cords (n = 154) were about 0.3 μg g(-1). Al was detected in 95% of placenta bodies, and 81% of placenta membranes, but only in 46% of umbilical cords.

Study Type : Human In Vitro

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.