n/a
Abstract Title:

Mulberry leaves ameliorate diabetes via regulating metabolic profiling and AGEs/RAGE and p38 MAPK/NF-κB pathway.

Abstract Source:

J Ethnopharmacol. 2021 Oct 6 ;283:114713. Epub 2021 Oct 6. PMID: 34626776

Abstract Author(s):

Jia-Shang Li, Tao Ji, Shu-Lan Su, Yue Zhu, Xing-Ling Chen, Er-Xin Shang, Sheng Guo, Da-Wei Qian, Jin-Ao Duan

Article Affiliation:

Jia-Shang Li

Abstract:

ETHNOPHARMACOLOGICAL RELEVANCE: Mulberry leaves have been used as traditional hypoglycemic medicine-food plant for thousand years in China. According to traditional Chinese medicine theory, type 2 diabetes mellitus (T2DM) belongs to the category of XiaoKe. Presently, the research of mulberry leaf hypoglycemic and lipid-lowering direction is mature, but the curative effects of alkaloids, flavonoids, polysaccharides, and other bioactive ingredients and the related mechanism is still unclear.

AIM OF THE STUDY: This paper aims to study the efficacy and mechanism of alkaloids, flavonoids, polysaccharides, and other bioactive components in mulberry leaves in the treatment of T2DM individually.

MATERIALS AND METHODS: The determination of levels of fasting blood glucose (FBG), triglyceride (TG) and total cholesterol (T-Cho), and pyruvate kinase (PK), hexokinase (HK), and alanine aminotransferase (ALT/GPT) of in plasma of diabetic mice. Urine metabolomics was analyzed by UPLC-QTOF/MS to evaluate differential metabolites from multiple metabolic pathways. The glucose uptake of HepG2 cells and 3T3-L1 cells. Expression of Caspase-3 and caspase-9, inflammatory injury and p38MAPK/NF-κB signaling pathway in GLUTag cells.

RESULTS: Our study revealed alkaloids, flavonoids, and polysaccharides in mulberry leaf could increase the levels of PK, HK, and ALT/GPT, and decrease the levels of TG and T-Cho significantly, and regulate glucose, amino acid, and lipid metabolism. Furthermore, 1-deoxynojirimycin (DNJ) and isoquercitrin (QG) both could increase glucose uptake and promote differentiation of HepG2 cells, increase PPARγ, C/EBPα and SREBP-l expression in 3T3-L1 cells, and inhibit AGEs-induced injury and apoptosis in GLUTag cells, reduce the expression of proteins related to AGEs/RAGE and p38MAPK/NF-κB pathway. Notably, isoquercitrin exhibited more pronounced anti-diabetic efficacy.

CONCLUSIONS: The alkaloids, flavonoids, and polysaccharides from mulberry leaf exhibited hypoglycemic activity through the regulation of glucose, amino acid, and lipid metabolism. 1-DNJ and QG increased glucose uptake and promoted differentiation of HepG2 cells, increased PPARγ, C/EBPα and SREBP-l expression in 3T3-L1 cells, and inhibited AGEs-induced injury and apoptosis in GLUTag cells via the AGEs/RAGE and p38 MAPK/NF-κB pathway.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.