Abstract Title:

N-acetylcysteine inhibits hyperglycemia-induced oxidative stress and apoptosis markers in diabetic neuropathy.

Abstract Source:

J Neurochem. 2009 Oct 15. PMID: 19840221

Abstract Author(s):

Sukhdev Singh Kamboj, Rakesh Kumar Vasishta, Rajat Sandhir


Abstract Several studies have indicated the involvement of oxidative stress in the development of diabetic neuropathy. In the present study, we have targeted oxidative stress mediated nerve damage in diabetic neuropathy using N-acetyl-L-cysteine (NAC), a potent antioxidant. After eight weeks, streptozotocin-induced diabetic rats developed neuropathy which was evident from decreased tail-flick latency (thermal hyperalgesia). This was accompanied by decreased motor coordination as assessed by performance on rota-rod treadmill. Na(+) K(+) ATPase, a biochemical marker of development of diabetic neuropathy, was significantly inhibited in sciatic nerve of diabetic animals. NAC treatment at a daily dose between 1.4 to 1.5 g/kg body weight to diabetic animals for seven weeks in drinking water ameliorated hyperalgesia, improved motor coordination and reversed reduction in Na(+) K(+) ATPase activity. There was an increase in lipid peroxidation in sciatic nerve of diabetic animals along with decrease in phospholipid levels, while NAC treatment attenuated lipid peroxidation and restored phospholipids to control levels. This was associated with decrease in glutathione and protein thiols. The activities of antioxidant enzymes; superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and glutathione-s-transferase were reduced in sciatic nerve of diabetic animals. Cytochrome C release and active caspase-3 were markedly increased in diabetic nerve suggesting activation of apoptotic pathway. NAC treatment significantly ameliorated decrease in antioxidant defense and prevented cytochrome c release and caspase-3 activation. Electron microscopy revealed demyelination, Wallerian degeneration and onion-bulb formation in sciatic nerve of diabetic rats. NAC on the other hand was able to reverse structural deficits observed in diabetic nerve. Our results clearly demonstrate protective effect of NAC is mediated through attenuation of oxidative stress and apoptosis, and suggest therapeutic potential of NAC in attenuation of diabetic neuropathy.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.