Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Article Publish Status: FREE
Abstract Title:

Naringenin attenuates pressure overload-induced cardiac hypertrophy.

Abstract Source:

Exp Ther Med. 2015 Dec ;10(6):2206-2212. Epub 2015 Oct 19. PMID: 26668617

Abstract Author(s):

Ning Zhang, Zheng Yang, Yuan Yuan, Fangfang Li, Yuan Liu, Zhenguo Ma, Haihan Liao, Zhouyan Bian, Yao Zhang, Heng Zhou, Wei Deng, Mengqiao Zhou, Qizhu Tang

Article Affiliation:

Ning Zhang

Abstract:

Cardiac hypertrophy is characterized by abnormal enlargement of cardiomyocytes and disproportionate accumulation of extracellular interstitial fibrosis, which are major predictors of the development of coronary artery disease and heart failure. Naringenin is a bitter principle component of grapefruit that has numerous pharmacological effects, including anti-inflammatory, hypolipidemic, antithrombotic and antiatherogenic properties. In order to investigate whether naringenin is able to exert a protective effect against cardiac hypertrophy induced by pressure overload, aortic banding (AB) was performed to induce cardiac hypertrophy in mice, and naringenin was administered for 7 weeks. A total of 60 mice were allocated into four groups: Sham + vehicle, AB + vehicle, sham + naringenin and AB + naringenin. Naringenin treatment attenuated cardiac dysfunction, as indicated by the results of echocardiography and catheter-based measurements at 8 weeks post-surgery. The extent of cardiac hypertrophy was assessed by the heart weight/body weight, heart weight/tibial length and lung weight/body weight ratios, in addition to the cardiomyocyte cross-sectional area and the mRNA expression levels of hypertrophic maker, all of which were mitigated by naringenin administration. Naringenin also inhibited the expression of transforming growth factor-β1, connective tissue growth factor, collagen Iα and collagen IIIα, and attenuated interstitial fibrosis. In addition, naringenin downregulated the activation of the extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathways. In conclusion, naringenin attenuated cardiac hypertrophy and interstitial fibrosis, in addition to improving left ventricular function in pressure-overloaded mice. The cardioprotective effect exerted by naringenin may be associated with the inhibition of PI3K/Akt, ERK and JNKsignaling pathways.

Study Type : Animal Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.