Abstract Title:

Naringenin targets on astroglial Nrf2 to support dopaminergic neurons.

Abstract Source:

Pharmacol Res. 2019 01 ;139:452-459. Epub 2018 Dec 6. PMID: 30527894

Abstract Author(s):

Guo-Qing Wang, Bei Zhang, Xue-Mei He, Dai-Di Li, Jing-Shan Shi, Feng Zhang

Article Affiliation:

Guo-Qing Wang


Astroglia serve as a critical role in metabolic and neurotrophic support to neurons. The loss of astroglia-derived neurotrophic effects could be a primary contributor to Parkinson's disease (PD). Thus, understanding astroglia functions is an important strategy for enhancing neuronal survival. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key role in neuronal resistance to oxidative stress and glutamate-induced excitotoxicity. Balancing oxidative stress by up-regulation of Nrf2 has been demonstrated to be effective in neurodegenerative disease treatment. Naringenin (NAR), a dietary flavonoid, displays anti-oxidant, cardioprotective, anti-inflammatory and neuroprotective activities. However, the molecular mechanisms underlying NAR-mediated neuroprotection against neurodegeneration remain unelucidated. Here, the present study investigated whether NAR promoted astroglial neurotrophic effects to support neurons and the underlying mechanisms as well. In primary rat midbrain neuron-glia co-cultures, NAR conferred neurotrophic effects to support dopaminergic (DA) neurons survival in the concentration- and time-dependent manners. Furtherly, astroglia were essential for NAR-mediated neurotrophic actions. Also, NAR elicited astrogliosis and neurotrophic factors release in primary neuron-glia co-cultures and astroglia-enriched cultures. Mechanistically, astroglial Nrf2 activation participated in NAR-mediated neurotrophic actions to support DA neurons evidenced by the following observations: 1) NAR increased Nrf2 mRNA and protein expressions both in neuron-glia and astroglia-enriched cultures; 2) Nrf2-siRNA inhibited NAR-mediated astrogliosis and neurotrophic factors release; 3) astroglial Nrf2-siRNA abolished NAR-mediated neurotrophic effects on DA neurons. Together, this study demonstrates NAR enhanced astroglial neurotrophic effects on DA neurons through the regulation of Nrf2 activation, and these findings might open new potential promising avenues for neurotrophic factor-based treatment of PD.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.