Abstract Title:

Natural speech algorithm applied to baseline interview data can predict which patients will respond to psilocybin for treatment-resistant depression.

Abstract Source:

J Affect Disord. 2018 04 1 ;230:84-86. PMID: 29407543

Abstract Author(s):

Facundo Carrillo, Mariano Sigman, Diego Fernández Slezak, Philip Ashton, Lily Fitzgerald, Jack Stroud, David J Nutt, Robin L Carhart-Harris

Article Affiliation:

Facundo Carrillo


BACKGROUND: Natural speech analytics has seen some improvements over recent years, and this has opened a window for objective and quantitative diagnosis in psychiatry. Here, we used a machine learning algorithm applied to natural speech to ask whether language properties measured before psilocybin for treatment-resistant can predict for which patients it will be effective and for which it will not.

METHODS: A baseline autobiographical memory interview was conducted and transcribed. Patients with treatment-resistant depression received 2 doses of psilocybin, 10 mg and 25 mg, 7 days apart. Psychological support was provided before, during and after all dosing sessions. Quantitative speech measures were applied to the interview data from 17 patients and 18 untreated age-matched healthy control subjects. A machine learning algorithm was used to classifybetween controls and patients and predict treatment response.

RESULTS: Speech analytics and machine learning successfully differentiated depressed patients from healthy controls and identified treatment responders from non-responders with a significant level of 85% of accuracy (75% precision).

CONCLUSIONS: Automatic natural language analysis was used to predict effective response to treatment with psilocybin, suggesting that these tools offer a highly cost-effective facility for screening individuals for treatment suitability and sensitivity.

LIMITATIONS: The sample size was small and replication is required to strengthen inferences on these results.

Study Type : Human Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2022 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.