Article Publish Status: FREE
Abstract Title:

Neferine inhibits proliferation, migration and invasion of U251 glioma cells by down-regulation of miR-10b.

Abstract Source:

Biomed Pharmacother. 2019 Jan ;109:1032-1040. Epub 2018 Nov 6. PMID: 30551353

Abstract Author(s):

Hua-Xin Liang, Li-Bo Sun, Nai-Jie Liu

Article Affiliation:

Hua-Xin Liang


BACKGROUND: Glioma is a common brain tumor, which is a serious threat to the life and health of human with high mortality rate. Recently, neferine (NEF) has been reported to play an important role in various cancers. In the study, we aimed to investigate the effect of NEF on human glioma cell line U251.

METHODS: U251 cells were pre-treated with different concentrations of NEF, and then CCK-8, BrdU, flow cytometry and transwell assays were used to test cell proliferation, apoptosis, migration and invasion. Subsequently, the expression vectors of miR-10b mimic and miR-10b inhibitor were transfected into U251 cells, and the relative expression of miR-10b was examined by qRT-PCR. The main proteins of CyclinD1/p53/p16, pro-Caspase-3/-9, cleaved-Caspase-3/-9, MMP-9, Vimentin, PTEN/PI3K/AKT and p38MAPK signal pathways were determined by western blot assay.

RESULTS: NEF significantly suppressed cell proliferation, and induced apoptosis, as well as regulated CyclinD1, p53, p16 and cleaved-Caspase-3/-9 expressions in U251 cells. Moreover, NEF inhibited cell migration, invasion and decreased MMP-9 and Vimentin expression in U251 cells. Additionally, miR-10b expression was down-regulated in NEF-stimulated cells, and overexpression of miR-10b reversed the regulatory effects of NEF on U251 cells proliferation, migration, invasion and apoptosis. Additionally, we found that PTEN was a direct target of miR-10b in U251 cells. Besides, NEF deactivated PTEN/PI3K/AKT and p38MAPK signal pathways by down-regulation of miR-10b in U251 cells.

CONCLUSIONS: These results suggested that NEF exerted anti-tumor effect by down-regulation of miR-10b and deactivation of PTEN/PI3K/AKT and p38MAPK signal pathways in glioma cells. These findings might provide a novel therapeutic strategy for glioma.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.