n/a
Abstract Title:

Oleanolic acid attenuates PCBs-induced adiposity and insulin resistance via HNF1b-mediated regulation of redox and PPARγ signaling.

Abstract Source:

Free Radic Biol Med. 2018 Jun 4. Epub 2018 Jun 4. PMID: 29879443

Abstract Author(s):

Shuhao Su, Guangyuan Wu, Xiaodong Cheng, Junshu Fan, Jie Peng, Hongfei Su, Zhongrui Xu, Meng Cao, Zi Long, Yiming Hao, Ge Li, Shuang Li, Chunxu Hai, Xin Wang

Article Affiliation:

Shuhao Su

Abstract:

Polychlorinated biphenyls (PCBs) exposure is closely associated with obesity and diabetes. However, the mechanism of PCBs-induced adiposity and insulin resistance is not clear and the intervention is limited. We have found that oleanolic acid (OA) is a natural triterpenoid, possessing antioxidant and anti-diabetic activity, and hepatocyte nuclear factor 1b (HNF1b) is an important regulator of glucose and lipid metabolism. The present study aimed to investigate the effect of OA on Aroclor 1254-induced adiposity and insulin resistance and explore the possible involvement of HNF1b. We showed that OA significantly attenuated Aroclor 1254-induced insulin resistance and abnormal changes of glucose and lipid parameters. OA inhibited the increase of adipose weight and adipocyte size in Aroclor 1254-treated mice and repressed adipocyte differentiation in vitro. In addition, OA markedly inhibited Aroclor 1254-induced increase of ROS, oxidant products, NOX4 expression, decrease of SOD1, SOD2, GCLC, GCLM and Gpx1 expression, and increase of PPARγ signaling. Aroclor 1254 resulted in a decrease of HNF1b expression in adipose of mice and adipocytes, which was inhibited by OA. Upregulation of HNF1b blocked Aroclor 1254-induced oxidative stress, adipocyte differentiation and insulin resistance. Downregulation of HNF1b inhibited OA-induced protective effects against Aroclor 1254-associated oxidative stress, adipocyte differentiation and insulin resistance. The antioxidant Vitamin C reduced Aroclor 1254-induced ROS generation in vitro, but had no significant effect on HNF1b expression, oxidative stress and metabolic dysfunction in vivo. OAcould inhibit PCBs mixture-induced oxidative injury and glucose/lipid metabolic dysfunction via HNF1b-mediated regulation of redox homeostasis. Our data suggest that HNF1b is a new on/off switch of redox homeostasis and OA-stimulated HNF1b-endogenous antioxidant activity is a potential option for the intervention of PCBs exposure-related adiposity and insulin resistance.

Study Type : Animal Study, In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.