n/a
Abstract Title:

Oral microbiome activity in children with autism spectrum disorder.

Abstract Source:

Autism Res. 2018 Sep ;11(9):1286-1299. Epub 2018 Aug 14. PMID: 30107083

Abstract Author(s):

Steven D Hicks, Richard Uhlig, Parisa Afshari, Jeremy Williams, Maria Chroneos, Cheryl Tierney-Aves, Kayla Wagner, Frank A Middleton

Article Affiliation:

Steven D Hicks

Abstract:

Autism spectrum disorder (ASD) is associated with several oropharyngeal abnormalities, including buccal sensory sensitivity, taste and texture aversions, speech apraxia, and salivary transcriptome alterations. Furthermore, the oropharynx represents the sole entry point to the gastrointestinal (GI) tract. GI disturbances and alterations in the GI microbiome are established features of ASD, and may impact behavior through the"microbial-gut-brain axis."Most studies of the ASD microbiome have used fecal samples. Here, we identified changes in the salivary microbiome of children aged 2-6 years across three developmental profiles: ASD (n = 180), nonautistic developmental delay (DD; n = 60), and typically developing (TD; n = 106) children. After RNA extraction and shotgun sequencing, actively transcribing taxa were quantified and tested for differences between groups and within ASD endophenotypes. A total of 12 taxa were altered between the developmental groups and 28 taxa were identified that distinguished ASD patients with and without GI disturbance, providing further evidence for the role of the gut-brain axis in ASD. Group classification accuracy was visualized with receiver operating characteristic curves and validated using a 50/50 hold-out procedure. Five microbial ratios distinguished ASD from TD participants (79.5% accuracy), three distinguished ASD from DD (76.5%), and three distinguished ASD children with/without GI disturbance (85.7%). Taxonomic pathways were assessed using the Kyoto Encyclopedia of Genes and Genomes microbial database and compared with one-way analysis of variance, revealing significant differences within energy metabolism and lysine degradation. Together, these results indicate that GI microbiome disruption in ASD extends to the oropharynx, and suggests oral microbiome profiling as a potential tool to evaluate ASD status. Autism Res 2018, 11: 1286-1299.© 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Previous research suggests that the bacteria living in the human gut may influence autistic behavior. This study examined genetic activity of microbes living in the mouth of over 300 children. The microbes with differences in children with autism were involved in energy processing and showed potential for identifying autism status.

Study Type : Human Study
Additional Links
Additional Keywords : Microbiome : CK(311) : AC(69)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.