n/a
Abstract Title:

Gastrodin Suppresses Pentylenetetrazole-Induced Seizures Progression by Modulating Oxidative Stress in Zebrafish.

Abstract Source:

Neurochem Res. 2018 Apr ;43(4):904-917. Epub 2018 Feb 7. PMID: 29417472

Abstract Author(s):

Meng Jin, Qiuxia He, Shanshan Zhang, Yixuan Cui, Liwen Han, Kechun Liu

Article Affiliation:

Meng Jin

Abstract:

Pentylenetetrazole (PTZ)-induced seizures in Zebrafish models are now widely accepted for investigating human disease epilepsy. In epilepsy, the generation of oxidative stress contributes to the brain injury. Although Gastrodin (GAS) has been reported to have anticonvulsant activities, its effects on zebrafish seizure models and the underlying mechanism remain unclear. In this study, we evaluated the effects of GAS pretreatment on PTZ-induced seizures in zebrafish larvae and investigated the underlying mechanism related to its anti-oxidative defense. We found for the first time that GAS significantly decreased seizure-like behavior and extended the latency period to the onset of seizures. In addition, after exposure to GAS, anti-oxidative activity was observed in PTZ-induced seizures by measurement of antioxidant enzymes activities and oxidative stress-related genes expression. The overall results indicate that GAS attenuates PTZ-induced seizures in a concentration-dependent manner and modulates oxidative stress to potentially protect larval zebrafish from further seizures. Furthermore, our results have provided novel insights into GAS related therapy of seizures and associated neurological disorders.

Study Type : Animal Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.