Article Publish Status: FREE
Abstract Title:

Effect of palmitoylethanolamide on inflammatory and neuropathic pain in rats.

Abstract Source:

Korean J Anesthesiol. 2017 Oct ;70(5):561-566. Epub 2017 Jul 13. PMID: 29046777

Abstract Author(s):

Tai-Kyung Seol, Wonho Lee, Sunah Park, Kyu Nam Kim, Tae Yeon Kim, You Na Oh, Jong Hun Jun

Article Affiliation:

Tai-Kyung Seol


BACKGROUND: A growing body of evidence suggests that neuroinflammation, which is characterized by infiltration of immune cells, activation of mast cells and glial cells, and production of inflammatory mediators in the peripheral and central nervous systems, plays an important role in the induction and maintenance of chronic pain. Palmitoylethanolamide (PEA), which is a type of N-acylethanolamide and a lipid, has an anti-inflammatory effect. Relative to the anti-inflammatory effect, little is known about its analgesic effect in chronic pain. This study aimed to determine whether PEA relieves chronic inflammatory and neuropathic pain.

METHODS: Male Sprague-Dawley rats were injured by transection of the left L5 and L6 spinal nerves to induce neuropathic pain or were injected with monoiodoacetic acid into the synovial cavity of knee joints to induce inflammatory pain. To assess the degree of pain, two kinds of stimuli - pressing von Frey filaments and wetting with acetone - were applied to the plantar surface of the rat to measure mechanical and cold sensitivity, respectively. Pain was measured by assessing behavioral responses, including paw withdrawal response threshold and paw withdrawal frequency upon stimulation.

RESULTS: Neuropathic pain caused by spinal nerve transection (SNT) decreased the mechanical threshold and increased the frequency of response to acetone application. But, cold allodynia caused by SNT did not decrease the withdrawal frequency. Mechanical hyperalgesia caused by chronic inflammation was significantly reduced by both intraperitoneal and intra-articular injections of PEA.

CONCLUSIONS: These outcomes revealed that PEA might be effective in relieving inflammatory and neuropathic pain, especially pain induced by mechanical hyperalgesia, but not cold allodynia.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.