n/a
Article Publish Status: FREE
Abstract Title:

Palmitoylethanolamide protects against the amyloid-β25-35-induced learning and memory impairment in mice, an experimental model of Alzheimer disease.

Abstract Source:

Neuropsychopharmacology. 2012 Jun ;37(7):1784-92. Epub 2012 Mar 14. PMID: 22414817

Abstract Author(s):

Giuseppe D'Agostino, Roberto Russo, Carmen Avagliano, Claudia Cristiano, Rosaria Meli, Antonio Calignano

Article Affiliation:

Giuseppe D'Agostino

Abstract:

Alzheimer disease (AD) is the most common form of neurodegenerative dementia. Amyloid-β deposition, neurofibrillary tangle formation, and neuro-inflammation are the major pathogenic mechanisms that in concert lead to memory dysfunction and decline of cognition. Palmitoylethanolamide (PEA) is the naturally occurring lipid amide between palmitic acid and ethanolamine. Despite its clear role in inflammation and pain control, only limited in vitro evidence exist about a role for PEA in neurodegenerative diseases. Here we describe the neuroprotective activities of PEA in mice injected intracerebroventricularly with amyloid-β 25-35 (Ab25-35) peptide (9 nmol). We used spatial andnon-spatial memory tasks to evaluate learning and memory dysfunctions. Ab25-35 injection significantly impaired spontaneous alternation performances, water maze spatial reference and working-like memory, and novel object recognition test. PEA was administered once a day (3-30 mg/kg, subcutaneously), starting 3 h after Ab25-35, for 1 or 2 weeks. PEA reduced (10 mg/kg) or prevented (30 mg/kg) behavioral impairments induced by Ab25-35 injection. PEA failed to rescue memory deficits induced by Ab25-35 injection in peroxisome proliferator-activated receptor-α (PPAR-α) null mice. GW7647 (2-(4-(2-(1-cyclohexanebutyl)-3-cyclohexylureido)ethyl)phenylthio)-2-methylpropionic acid; 5 mg/kg per day), a synthetic PPAR-α agonist, mimicked the effect of PEA. Acute treatment with PEA was ineffective. According with the neuroprotective profile of PEA observed during behavioral studies, experimental molecular and biochemical markers induced by Ab25-35 injection, such as lipid peroxidation, protein nytrosylation, inducible nitric oxide synthase induction, and caspase3 activation, were reduced by PEA treatment. These data disclose novel findings about the therapeutic potential of PEA, unrevealing a previously unknown therapeutic possibility to treat memory deficits associated with AD.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.