Article Publish Status: FREE
Abstract Title:

Saponins Regulate Macrophage Polarization under Hyperglycemic Condition via NF-B Signaling Pathway.

Abstract Source:

Biomed Res Int. 2018 ;2018:9239354. Epub 2018 Jul 30. PMID: 30151392

Abstract Author(s):

Yan Zhao, Jianlei Zheng, Yongmei Yu, Lihong Wang

Article Affiliation:

Yan Zhao


saponins (PNS), the principal constituents derived from, have been extensively used for treating cardiocerebral vascular diseases in China and other Asian countries. The main effects of PNS were anti-inflammatory properties, inhibition of platelet aggregation, improvement of blood flow and insulin resistance, and so on. This study was carried out to explore the effects of PNS on macrophage polarization under hyperglycemic conditions. Human acute monocyte leukemia cell line THP-1 cells were induced into macrophages with Phorbol ester (PMA). Macrophages were then divided into five groups as follows: control (5.5mMol/l glucose), hyperglycemia group (15mMol/l glucose), hyperglycemia plus low-dose PNS (20ug/ml), hyperglycemia plus moderate-dose PNS (40ug/ml), and hyperglycemia plus high-dose PNS (60ug/ml). After 48-hour cell culture, the percentages of M1- and M2-polarized macrophages were measured by flow cytometry analysis. Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to evaluate the Ym1 and arginase 1 expression in macrophages. Protein expression of arginase 1, NF-B p50, p65, and inhibitor ofB (IB) alpha phosphorylation in macrophages was identified with Western blotting. PNS, especially the high-dose PNS, remarkably increased M2 phenotype ratio in macrophages cultured with hyperglycemia, and the mRNA expression of Ym1 and arginase 1 in macrophages was also upregulated. Meanwhile, PNS remarkably increased the protein expression of arginase 1 and decreased IB-alpha phosphorylation and subunits of NF-B p50 and p65 from macrophages in culture medium with hyperglycemia. Taken together, our work demonstrated that PNS promote macrophages to transform M2 phenotype under hyperglycemic conditions through downregulating NF-B signaling pathway.

Study Type : In Vitro Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.