n/a
Abstract Title:

Parthenolide inhibits LPS-induced inflammatory cytokines through the toll-like receptor 4 signal pathway in THP-1 cells.

Abstract Source:

Acta Biochim Biophys Sin (Shanghai). 2015 May ;47(5):368-75. Epub 2015 Apr 4. PMID: 25841439

Abstract Author(s):

Shuangshuang Li, Xiangli Gao, Xiaoxin Wu, Zhigang Wu, Linfang Cheng, Lifen Zhu, Dan Shen, Xiangmin Tong

Article Affiliation:

Shuangshuang Li

Abstract:

Parthenolide (PTL) shows potent anti-inflammatory and anti-cancer activities. In the present study, the molecular mechanisms of PTL's activities were explored in lipopolysaccharide (LPS)-induced human leukemia monocytic THP-1 cells and human primary monocytes. The 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt (MTS) assay was used to analyze the effect of PTL on THP-1 cell viability. Enzyme-linked immunosorbent assay was used to determine the effect of PTL on LPS-induced inflammatory cytokine secretion. Flow cytometry and quantitative real-time polymerase chain reaction were used to assess the effect of PTL on LPS-induced toll-like receptor 4 (TLR4) expression. Phosphorylation levels of signaling molecules were determined by western blot analysis. Results showed that PTL<12.5μM did not significantly affect THP-1 cells viability. LPS treatment led to a marked up-regulation of interleukin (IL)-6, IL-1β, IL-8, IL-12p40, tumor necrosis factor-α, IL-18, and NO in THP-1 cells. However, PTL inhibited the expression of these cytokines in a dose-dependent manner, with IC50 values of 1.091-2.620 μM. PTL blocked TLR4 expression with an IC50 value of 1.373 μM as determined by the flow cytometry analysis, and this blocking effect was verified at both protein and mRNA levels. Up-regulation of phosphorylation levels of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, p38, nuclear factor κB (NF-κB) p65, and IκBα and up-regulation of expressions of other molecules (inducible nitric oxide synthase, TLR4, and TNF receptor-associated factor 6) induced by LPS were abolished by PTL in a dose-dependent manner. The anti-inflammatory mechanisms of PTL operate partly through the TLR4-mediated mitogen-activated protein kinase and NF-κB signaling pathways. Therefore, TLR4 may be a new target for anti-inflammation therapies.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.