Abstract Title:

Prenatal Bisphenol A Exposure in Mice Induces Multi-tissue Multi-omics Disruptions Linking to Cardiometabolic Disorders.

Abstract Source:

Endocrinology. 2018 Dec 18. Epub 2018 Dec 18. PMID: 30566610

Abstract Author(s):

Le Shu, Qingying Meng, Graciel Diamante, Brandon Tsai, Yen-Wei Chen, Andrew Mikhail, Helen Luk, Beate Ritz, Patrick Allard, Xia Yang

Article Affiliation:

Le Shu


The health impacts of endocrine disrupting chemicals (EDCs) remain debated and their tissue and molecular targets are poorly understood. Here, we leveraged systems biology approaches to assess the target tissues, molecular pathways, and gene regulatory networks associated with prenatal exposure to the model EDC Bisphenol A (BPA). Prenatal BPA exposure at 5mg/kg/day, a dose below most reported no-observed-adverse-effect-level, led to tens to thousands of transcriptomic and methylomic alterations in the adipose, hypothalamus, and liver tissues in male offspring in mice, with cross-tissue perturbations in lipid metabolism as well as tissue-specific alterations in histone subunits, glucose metabolism and extracellular matrix. Network modeling prioritized main molecular targets of BPA, including Pparg, Hnf4a, Esr1, Srebf1, and Fasn as well as numerous less studied targets such as Cyp51 and lncRNAs across tissues, Fa2h in hypothalamus, and Nfya in adipose tissue. Lastly, integrative analyses identified the association of BPA molecular signatures with cardiometabolic phenotypes in mouse and human. Our multi-tissue, multi-omics investigation provides strong evidence that BPA perturbs diverse molecular networks in central and peripheral tissues, and offers insights into the molecular targets that link BPA to human cardiometabolic disorders.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.