n/a
Article Publish Status: FREE
Abstract Title:

Prenatal exposure to low doses of fungicides corrupts neurogenesis in neonates.

Abstract Source:

Environ Res. 2021 Feb 3:110829. Epub 2021 Feb 3. PMID: 33548298

Abstract Author(s):

Yunyun Wang, Pierre-André Lafon, Lucie Salvador-Prince, Aroa Relano Gines, Françoise Trousse, Joan Torrent, Corinne Prevostel, Carole Crozet, Jianfeng Liu, Véronique Perrier

Article Affiliation:

Yunyun Wang

Abstract:

Neurogenesis plays a crucial role during neurodevelopment and its dysfunction can lead to neurodevelopmental disorders. A recent hypothesis stipulates that exogenous factors could corrupt this process and predispose to neurodegenerative disorders later in life. The presence of pesticide residues in the diet represents a threat of which we have recently become aware of. Indeed, they could corrupt neurogenesis, especially during gestation, potentially leading to impaired neuronal and synaptic functions. Since the effects of this low-noise contamination have not yet been evaluated on the neurodevelopment, we investigated the impact of fungicide residues on WT mice exposed throughout gestation. Thus, mice were exposed to fungicides, cyprodinil, mepanipyrim and pyrimethanil, alone at 0.1μg/L during gestation until P3. Besides, another group was exposed to a cocktail of these three fungicides (0.1 μg/L each) for the same time. Exposure was performed through drinking water at the regulatory limit dose of the European countries (0.1 μg/L). No general toxicity was observed in neonates on body and brain weight upon fungicide exposure. However, results showed that gestational exposure to fungicide residues substantially promoted an increase of neural precursor cells at P3. This corrupted neurogenesis was linked to increased levels of β-catenin, likely through the crosstalk of the PI3K/Akt and Wnt/β-catenin pathways, both involved in cell proliferation. Fungicide exposure also altered protein expression of PSD95 and NMDA receptors in P3 neonates, two targets of the β-catenin signaling pathway. Adult neural stem cell extractions from mice treated with the fungicide cocktail, showed an increase proliferation and differentiation combined with a reduction of their migration properties. In addition, in vitro studies on hippocampal primary cell cultures treated with various concentrations of fungicides showed neurotoxic effects. To conclude, corruption of neurogenesis bythis chemical assault could be a fertile ground for the development of neurological diseases later in life.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.