n/a
Abstract Title:

Preterm birth is associated with epigenetic programming of transgenerational hypertension in mice.

Abstract Source:

Exp Mol Med. 2020 Jan 24. Epub 2020 Jan 24. PMID: 31974504

Abstract Author(s):

Laurence Dumeige, Mélanie Nehlich, Say Viengchareun, Julie Perrot, Eric Pussard, Marc Lombès, Laetitia Martinerie

Article Affiliation:

Laurence Dumeige

Abstract:

Renal and cardiovascular complications of prematurity are well established, notably the development of hypertension in adulthood. However, the underlying molecular mechanisms remain poorly understood. Our objective was to investigate the impact of prematurity on the ontogenesis of renal corticosteroid pathways, to evaluate its implication in perinatal renal complications and in the emergence of hypertension in adulthood. Swiss CD1 pregnant mice were injected with lipopolysaccharides at 18 days of gestation (E18) to induce prematurity at E18.5. Pups were sacrificed at birth, 7 days and 6 months of life. Second (F2) and third (F3) generations, established by mating prematurely born adult females with wild-type males, were also analyzed. Former preterm males developed hypertension at M6 (P < 0.0001). We found robust activation of renal corticosteroid target gene transcription at birth in preterm mice (αENaC (+45%), Gilz (+85%)), independent of any change in mineralocorticoid or glucocorticoid receptor expression. The offspring of the preterm group displayed increased blood pressurein F2 and F3, associated with increased renal Gilz mRNA expression, despite similar MR or GR expression and plasma corticosteroid levels measured by LC-MS/MS. Gilz promoter methylation measured by methylated DNA immunoprecipitation-qPCR was reduced with a negative correlation between methylation andexpression (P = 0.0106). Our study demonstrates prematurity-related alterations in renal corticosteroid signaling pathways, with transgenerational inheritance of blood pressure dysregulation and epigenetic Gilz regulation up to the third generation. This study provides a better understanding ofthe molecular mechanisms involved in essential hypertension, which could partly be due to perinatal epigenetic programming from previous generations.

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.