n/a
Abstract Title:

Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes.

Abstract Source:

Chemosphere. 2020 Feb ;240:124746. Epub 2019 Sep 13. PMID: 31568946

Abstract Author(s):

Franco Cervellati, Mascia Benedusi, Francesco Manarini, Brittany Woodby, Mara Russo, Giuseppe Valacchi, Maria Chara Pietrogrande

Article Affiliation:

Franco Cervellati

Abstract:

The skin is one of the main organs exposed to airborne particulate matter (PM), which may contain various pollutants linked to a wide range of adverse health endpoints. In the present work, we analyzed the proinflammatory and oxidative effects of some PM components leading to inflammatory responses, cell proliferation or cell death. We investigated four redox-active chemicals, such as Cu (II) metal and quinones generated from polycyclic aromatic hydrocarbons (PAHs), i.e., 9,10 phenanthrenequinone and isomers 1,2 and 1,4 naphthoquinone. We performed in vitro biological tests on human keratinocyte (HaCaT) cells and also acellular assays based on the oxidation of dithiothreitol and ascorbic acid, antioxidants to assess the oxidative potential (OP). We found that treated keratinocytes showed increased activation of the redox-sensitive transcriptionfactor NFκB and increased transcript levels of the NFκB-dependent gene IL8. Moreover, the treatment with Cu(II) and quinones increased the activities and the expression of genes involved in the redox response, SOD1 and GPX, suggesting that PM components induced cellular damage due to redox imbalances. Finally, we found alteration of the mitochondrial ultrastructure and increased apoptosis after 24 h of treatment. The results presented suggest that all of the analyzed pollutant components are able to modulate similar signal transduction pathways, resulting in activation of inflammatory processes in the skin, followed by oxidative damage. Altogether these observations indicate that exposure of skin to air pollutants modifies the redox equilibrium of keratinocytes, which could explain the increased skin damage observed in populations that live in high-pollution cities.

Study Type : Human In Vitro

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.