Article Publish Status: FREE
Abstract Title:

Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice.

Abstract Source:

PLoS One. 2018 ;13(12):e0210120. Epub 2018 Dec 31. PMID: 30596786

Abstract Author(s):

Bobae Kim, Jeonghyeon Kwon, Min-Seok Kim, Haryung Park, Yosep Ji, Wilhelm Holzapfel, Chang-Kee Hyun

Article Affiliation:

Bobae Kim


Recently, modulation of gut microbiota by probiotics treatment has been emerged as a promising strategy for treatment of metabolic disorders. Apart from lactic acid bacteria, Bacillus species (Bacillus spp.) have also been paid attention as potential probiotics, but nevertheless, the molecular mechanisms for their protective effect against metabolic dysfunction remain to be elucidated. In this study, we demonstrate that a probiotic mixture composed of 5 different Bacillus spp. protects mice from high-fat diet (HFD)-induced obesity, insulin resistance and non-alcoholic fatty liver disease (NAFLD). Probiotic Bacillus treatment substantially attenuated body weight gain and enhanced glucose tolerance by sensitizing insulin action in skeletal muscle and epididymal adipose tissue (EAT) of HFD-fed mice. Bacillus-treated HFD-fed mice also exhibited significantly suppressed chronic inflammation in the liver, EAT and skeletal muscle, which was observed to be associated with reduced HFD-induced intestinal permeability and enhanced adiponectin production. Additionally, Bacillus treatment significantly reversed HFD-induced hepatic steatosis. In Bacillus-treated mice, hepatic expression of lipid oxidative genes was significantly increased, and lipid accumulation in subcutaneous and mesenteric adipose tissues were significantly decreased, commensurate with down-regulated expression of genes involved in lipid uptake and lipogenesis. Although, in Bacillus-treated mice, significant alterations in gut microbiota composition was not observed, the enhanced expression of tight junction-associated proteins showed a possibility of improving gut barrier function by Bacillus treatment. Our findings provide possible explanations how Bacillus probiotics protect diet-induced obese mice against metabolic disorders, identifying the treatment of probiotic Bacillus as a potential therapeutic approach.

Study Type : Animal Study

Print Options

Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.