n/a
Abstract Title:

Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells.

Abstract Source:

Phytomedicine. 2014 Oct 15 ;21(12):1717-24. Epub 2014 Sep 16. PMID: 25442282

Abstract Author(s):

Margrét Bessadóttir, EddaÁ Skúladóttir, Sharon Gowan, Suzanne Eccles, Sesselja Ögmundsdóttir, Helga M Ogmundsdóttir

Article Affiliation:

Margrét Bessadóttir

Abstract:

BACKGROUND: The lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75.

AIMS: To test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated.

MATERIALS AND METHODS: Pure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)(®) assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software.

RESULTS: Treatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells.

CONCLUSION: Results suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.