Abstract Title:

Possible effects of glyphosate on Mucorales abundance in the rumen of dairy cows in Germany.

Abstract Source:

Curr Microbiol. 2014 Dec ;69(6):817-23. Epub 2014 Jul 31. PMID: 25079171

Abstract Author(s):

Wieland Schrödl, Susanne Krüger, Theodora Konstantinova-Müller, Awad A Shehata, Ramon Rulff, Monika Krüger

Article Affiliation:

Wieland Schrödl

Abstract:

Glyphosate (N-phosphonomethyl glycine) is registered as a herbicide for many food and non-food crops, as well as non-crop areas where total vegetation control is desired. Glyphosate influences the soil mycobiota; however, the possible effect of glyphosate residues in animal feed (soybean, corn, etc.) on animal mycobiota is almost unknown. Accordingly, the present study was initiated to investigate the mycological characteristics of dairy cows in relationship to glyphosate concentrations in urine. A total of 258 dairy cows on 14 dairy farms in Germany were examined. Glyphosate was detected in urine using ELISA. The fungal profile was analyzed in rumen fluid samples using conventional microbiological culture techniques and differentiated by MALDI-TOF mass spectrometry. LPS-binding protein (LBP) and antibodies (IgG1, IgG2, IgA, and IgM) against fungi were determined in blood using ELISA. Different populations of Lichtheimia corymbifera, Lichtheimia ramosa, Mucor, and Rhizopus were detected. L. corymbifera and L. ramosa were significantly more abundant in animals containing high glyphosate (>40 ng/ml) concentrations in urine. There were no significant changes in IgG1 and IgG2 antibodies toward isolated fungi that were related to glyphosate concentration in urine; however, IgA antibodies against L. corymbifera and L. ramosa were significantly lower in the higher glyphosate groups. Moreover, a negative correlation between IgM antibodies against L. corymbifera, L. ramosa, and Rhizopus relative to glyphosate concentration in urine was observed. LBP also was significantly decreased in animals with higher concentrations of glyphosate in their urine. In conclusion, glyphosate appears to modulate the fungal community. The reduction of IgM antibodies and LBP indicates an influence on the innate immune system of animals.

Study Type : Animal Study
Additional Links
Problem Substances : Glyphosate : CK(895) : AC(381)
Adverse Pharmacological Actions : Immunosuppressive : CK(234) : AC(46)

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.