Abstract Title:

Reversal effect of rosmarinic acid on multidrug resistance in SGC7901/Adr cell.

Abstract Source:

J Asian Nat Prod Res. 2013 ;15(3):276-85. Epub 2013 Feb 19. PMID: 23421517

Abstract Author(s):

Fa-Rong Li, Yan-Yan Fu, Dan-Hong Jiang, Zhen Wu, Yang-Jing Zhou, Ling Guo, Zhong-Min Dong, Zhe-Zhi Wang

Article Affiliation:

Key Laboratory of Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.

Abstract:

Multidrug resistance (MDR) has been a major problem in cancer chemotherapy. In this study, the aim was to explore the reversal effect and its potential mechanism of rosmarinic acid (RA) on SGC7901/Adr cells. 3-(4,5-Dimethylthiazol)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to investigate the reversal index of RA in SGC7901/Adr cell line. The intracellular accumulation of adriamycin, rhodamine123 (Rh123), and the expression of P-glycoprotein (P-gp) were assayed by flow cytometry. The influence of RA on the transcription of MDR1 gene was determined by reverse transcription-polymerase chain reaction. The results showed that RA could reverse the MDR of SGC7901/Adr cells, increase the intracellular accumulation of Adr and Rh123, and decrease the transcription of MDR1 gene and the expression of P-gp in SGC7901/Adr cells. These results indicated that RA was a potential multidrug resistance-reversing agent and warranted further investigations.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.