n/a
Abstract Title:

Rooibos suppresses proliferation of castration-resistant prostate cancer cells via inhibition of Akt signaling.

Abstract Source:

Phytomedicine. 2019 Aug 8 ;64:153068. Epub 2019 Aug 8. PMID: 31419729

Abstract Author(s):

Shih-Han Huang, Jen-Chih Tseng, Ching-Yu Lin, Ying-Yu Kuo, Bi-Juan Wang, Yung-Hsi Kao, Christo J F Muller, Elizabeth Joubert, Chih-Pin Chuu

Article Affiliation:

Shih-Han Huang

Abstract:

BACKGROUND: Androgen ablation therapy is the primary treatment for metastatic prostate cancer (PCa). However, the majority of PCa patients receiving the androgen deprivation therapy develop recurrent castration-resistant prostate cancer (CRPC) within two years. Chemotherapies show little effect on prolonging survival of CRPC patients and new treatments are needed. Previous studies reported that the extracts from rooibos (Aspalathus linearis) exhibit chemopreventive properties in some cancer models, including skin, liver and oesophagus cancers in animals. We therefore investigate if extracts from rooibos can suppress the proliferation of CRPC cells.

PURPOSE: We investigated whether an aspalathin-rich green rooibos extract (GRT™; 12.78 g aspalathin/100 g extract) demonstrates anti-cancer activity against CRPC cells.

METHODS: High performance liquid chromatography (HPLC) was used to profile the major flavonoids in GRT. Hoechst-dye proliferation assay, 3,4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide (MTT) viability assay and flow cytometry assay were used to explore the effects of GRT on the proliferation and cell cycle progression of CRPC cells. Comet assay was used to survey whether GRT induces apoptosis in CRPC cells. LNCaP 104-R1 xenograft nude mice model was used to determine the inhibitory effect of GRT on CRPC tumors in vivo. Micro-Western Array (MWA) and Western blot analysis were carried out to unravel the underlying molecular mechanism.

RESULTS: GRT contained aspalathin as the most abundant flavonoid. GRT suppressed the proliferation and survival of LNCaP 104-R1, LNCaP FGC and PC-3 PCa cells. Flow cytometry analysis showed that GRT decreased the population of PCa cells in S phase but increased the cell population in G2/M phase. Comet assay confirmed that GRT induced apoptosis in LNCaP 104-R1 cells. Gavage of 400 mg/kg GRT suppressed LNCaP 104-R1 xenografts in castrated nude mice. MWA and Western blot analysis indicated that GRT treatment suppressed Akt1, phospho-Akt Ser473, Cdc2, Bcl-2, TRAF4 and Aven, but increased activated Caspase 3, cytochrome c, and p27. Overexpression of Akt rescued the suppressive effects of GRT on CRPC cells. Co-treatment of GRT with Bcl-2 inhibitor ABT-737, PI3K inhibitor LY294002 and Akt inhibitor GSK 690693 exhibited additive inhibitory effect on proliferation of CRPC cells.

CONCLUSIONS: GRT suppresses the proliferation of CRPC cells via inhibition of Akt signaling.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.