n/a
Article Publish Status: FREE
Abstract Title:

Phytochemicals, Antioxidant and Antiproliferative Properties of Rosmarinus officinalis L on U937 and CaCo-2 Cells.

Abstract Source:

Iran J Pharm Res. 2017 ;16(1):315-327. PMID: 28496485

Abstract Author(s):

Yacine Amar, Boumediene Meddah, Irene Bonacorsi, Gregorio Costa, Gaetana Pezzino, Antonina Saija, Mariateresa Cristani, Soulef Boussahel, Guido Ferlazzo, Aicha Tirtouil Meddah

Article Affiliation:

Yacine Amar

Abstract:

Rosmarinus officinalis L., a medicinal herb from the labiates family, has been reported to have potential benefit in the treatment and prevention of several diseases. In particular its phenolics have demonstrated protective effects on various types of cancer through several mechanisms. The present study aimed to determine the effects of rosemary phenolic extracts on human cell functions, with particular regard to their anti-proliferative properties in three cell types U937, CaCo-2 and the peripheral blood mononuclear cells (PBMCs). The radical scavenging and Ferric reducing abilities of the extracts have been assessed as well as their cyto-toxicity and effects on cell cycle distribution and apoptosis. About 13 compounds were identified with dominance of rosmarinic acid in the methanolic extract and phenolic diterpens in the ethyl acetate fraction (Carnosol, Carnosic acid and methyl Carnosate). The total polyphenolic content was important in the first extract with 2.589± 0.005 g/100 g in gallic acid equivalent compared to 0.763 ± 0.005 g/100 g. The methanolic fraction displayed higher antioxidant activity (DPPHIC50: 0.510 mg/mL and FRAP: 1.714 ± 0.068 mmol Fe(2+)/g) while ethyl acetate showed pronounced antiproliferative effects (IC50: 14.85 ± 0.20µg/mL and 14.95 ± 2.32 µg/mL respectively for U937 and CaCo-2 cells). The anti-proliferative effect was associated with a cell cycle arrest in S phase for U937 (62% of the population at 5 µg/mL) with a concomitant decrease in G1 and G2/M phases. Tested extracts displayed in addition early apoptotic effectsin U937 and late apoptosis in CaCo-2 cells. The obtained data indicate that the identified phenolics are at least partially responsible for the observed cytotoxicity.

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.