n/a
Abstract Title:

Rapid human melanoma cell death induced by sanguinarine through oxidative stress.

Abstract Source:

Eur J Pharmacol. 2013 Apr 5 ;705(1-3):109-18. Epub 2013 Mar 13. PMID: 23499690

Abstract Author(s):

Ana Burgeiro, Ana C Bento, Consuelo Gajate, Paulo J Oliveira, Faustino Mollinedo

Article Affiliation:

Ana Burgeiro

Abstract:

Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Here we have found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Time-lapse videomicroscopy showed rapid morphological changes compatible with an apoptotic cell death, which was further supported by biochemical markers, including caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage and DNA breakdown. Pan-caspase inhibition blocked sanguinarine-induced cell death. Sanguinarine treatment also induced an increase in intracellular calcium concentration, which was inhibited by dantrolene, and promoted cleavage of BAP-31, thus suggesting a putative role for Ca(2+) release from endoplasmic reticulum and a cross-talk between endoplasmic reticulum and mitochondria in the anti-melanoma action of sanguinarine. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨm), released cytochrome c and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Overexpression of Bcl-XL by gene transfer did not prevent sanguinarine-mediated cell death, oxidative stress or release of mitochondrial apoptogenic proteins. However, preincubation with N-acetyl-l-cysteine (NAC) prevented sanguinarine-induced oxidative stress, PARP cleavage, release of apoptogenic mitochondrial proteins, and cell death. Pretreatment with glutathione (GSH) also inhibited the anti-melanoma activity of sanguinarine. Thus, pretreatment with the thiol antioxidants NAC and GSHabrogated the killing activity of sanguinarine. Taking together, our data indicate that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress.

Study Type : In Vitro Study

Print Options


Key Research Topics

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2024 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.