Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and inhibit associated changes in Ca2+-induced mitochondrial permeability transition and mitochondrial membrane potential in H9c2 cardiomyocytes.

Abstract Source:

Life Sci. 2008 May 23;82(21-22):1092-101. Epub 2008 Mar 30. PMID: 18452952

Abstract Author(s):

Po Yee Chiu, Ka Fai Luk, Hoi Yan Leung, Ka Ming Ng, Kam Ming Ko

Article Affiliation:

Department of Biochemistry, The Hong Kong University of Science&Technology, Clear Water Bay, Hong Kong SAR, China.

Abstract:

The effects of schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in H9c2 cardiomyocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transition (MPT), and mitochondrial membrane potential (Deltapsi(m)) values, were examined in (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch and (-)Sch B (2.5-5.0 microM) pretreatments protected against hypoxia/reoxygenation-induced apoptosis of H9c2 cells in a concentration-dependent manner, with (-)Sch B being more potent. The degrees of protection decreased, however, at the higher drug concentrations of 7.5 microM in both (+/-)gamma-Sch-pretreated and (-)Sch B-pretreated cells. The anti-apoptotic effects of the drugs were further evidenced by the suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and the subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase after (-)Sch B pretreatment. Both (+/-)gamma-Sch and (-)Sch B pretreatments increased GSH levels in H9c2 cells, with (-)Sch B being more potent. Hypoxia/reoxygenation challenge caused a depletion in cellular GSH and the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B was associated with enhancement of cellular GSH in H9c2 cells, as compared to the drug-unpretreated control. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening and decreased Deltapsi(m) in H9c2 cardiomyocytes, cytoprotection against hypoxia/reoxygenation-induced apoptosis afforded by (+/-)gamma-Sch/(-)Sch B pretreatments was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, as compared to the respective drug-unpretreated controls. The degrees of protection against apoptosis correlated negatively with the extents of Ca(2+)-induced MPT (r=-0.615, P<0.01) and positively with the values of Deltapsi(m) (r=0.703, P<0.01) in (+/-)gamma-Sch/(-)Sch B-pretreated and hypoxia/reoxygenation challenged cells. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in H9c2 cardiomyocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in cellular sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.