Abstract Title:

A mechanism of benefit of soy genistein in asthma: inhibition of eosinophil p38-dependent leukotriene synthesis.

Abstract Source:

Clin Exp Allergy. 2008 Jan;38(1):103-12. Epub 2007 Nov 2. PMID: 17979994

Abstract Author(s):

R Kalhan, L J Smith, M C Nlend, A Nair, J L Hixon, P H S Sporn

Abstract:

BACKGROUND: Dietary intake of the soy isoflavone genistein is associated with reduced severity of asthma, but the mechanisms responsible for this effect are unknown. OBJECTIVE: To determine whether genistein blocks eosinophil leukotriene C(4) (LTC(4)) synthesis and to evaluate the mechanism of this effect, and to assess the impact of a 4-week period of soy isoflavone dietary supplementation on indices of eosinophilic inflammation in asthma patients. METHODS: Human peripheral blood eosinophils were stimulated in the absence and presence of genistein, and LTC(4) synthesis was measured. 5-lipoxygenase (5-LO) nuclear membrane translocation was assessed by confocal immunofluorescence microscopy. Mitogen-activated protein (MAP) kinase activation was determined by immunoblot. Human subjects with mild-to-moderate persistent asthma and minimal or no soy intake were given a soy isoflavone supplement (100 mg/day) for 4 weeks. The fraction of exhaled nitric oxide (FE(NO)) and ex vivo eosinophil LTC(4) production were assessed before and after the soy isoflavone treatment period. RESULTS: Genistein inhibited eosinophil LTC(4) synthesis (IC(50) 80 nm), blocked phosphorylation of p38 MAP kinase and its downstream target MAPKAP-2, and reduced translocation of 5-LO to the nuclear membrane. In patients with asthma, following 4 weeks of dietary soy isoflavone supplementation, ex vivo eosinophil LTC(4) synthesis decreased by 33% (N=11, P=0.02) and FE(NO) decreased by 18% (N=13, P=0.03). CONCLUSION: At physiologically relevant concentrations, genistein inhibits eosinophil LTC(4) synthesis in vitro, probably by blocking p38- and MAPKAP-2-dependent activation of 5-LO. In asthma patients, dietary soy isoflavone supplementation reduces eosinophil LTC(4) synthesis and eosinophilic airway inflammation. These results support a potential role for soy isoflavones in the treatment of asthma.

Study Type : In Vitro Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.