Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

Abstract Title:

Simvastatin triggers mitochondria-induced Ca2+ signaling alteration in skeletal muscle.

Abstract Source:

Biochem Biophys Res Commun. 2005 Apr 15 ;329(3):1067-75. PMID: 15752763

Abstract Author(s):

Pascal Sirvent, Jacques Mercier, Guy Vassort, Alain Lacampagne

Article Affiliation:

INSERM U637 CHU A. de Villeneuve, Montpellier, France; EA 701, Université Montpellier I, Montpellier, France.

Abstract:

Statin drugs represent the major improvement in the treatment of hypercholesterolemia that constitutes the main origin of atherosclerosis, leading to coronary heart disease. Besides tremendous beneficial effects of statins, various forms of muscular toxicity (myalgia, cramp, exercise intolerance, and fatigability) occur frequently. We hypothesized that the iatrogenic effects of statins could result from alterations in Ca(2+) homeostasis. Acute applications of simvastatin on human skeletal muscle fibers triggered a Ca(2+) wave of intra-cellular Ca(2+) that mostly originates from sarcoplasmic reticulum (SR) Ca(2+)-release. In addition, simvastatin increased mitochondrial NADH content and induced mitochondrial membrane depolarization (EC(50)=1.96 microM) suggesting an altered mitochondrial function. Consequently on simvastatin application, a weak mitochondrial Ca(2+) efflux (EC(50)=7.8 microM) through permeability transient pore and Na(+)/Ca(2+) exchanger was triggered, preceding the large SR-Ca(2+) release. Increased SR Ca(2+) content after acute application of statin is also suggested by the increased Ca(2+) spark amplitude and by the effect of cyclopiazonic acid. We thus conclude that simvastatin induced alterations in mitochondrial function which lead to an increase in cytoplasmic Ca(2+), SR-Ca(2+) overload, and Ca(2+) waves. Taken together, these statin-induced muscle dysregulations may contribute to myotoxicity.

Study Type : In Vitro Study

Print Options


Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.