Abstract Title:

Structural alterations in Pseudomonas aeruginosa by zingerone contribute to enhanced susceptibility to antibiotics, serum and phagocytes.

Abstract Source:

Life Sci. 2014 Nov 4 ;117(1):24-32. Epub 2014 Sep 30. PMID: 25277943

Abstract Author(s):

Lokender Kumar, Sanjay Chhibber, Kusum Harjai

Article Affiliation:

Lokender Kumar


AIMS: Excessive use of antibiotics has led to evolutionary adaptation resulting in emergence of multidrug resistance in P. aeruginosa. The aim of the present study was oriented towards exploiting zingerone (active component of ginger) in making P. aeruginosa more susceptible to killing with antibiotics, humoral/cellular defences and studying its underlying mechanism.

MAIN METHOD: Effect of zingerone treatment on antibiotic susceptibility, serum, and phagocytic killing of P. aeruginosa was studied. The underlying mechanism was evaluated in terms of cell surface hydrophobicity, alginate and LPS production. TNF-α and MIP-2 cytokine production by mouse macrophages was also checked. Structural analysis was carried out using scanning electron microscopy (SEM) and liquid chromatography-mass spectrometry (LC-MS) analysis.

KEY FINDINGS: Zingerone treated cells showed increased susceptibility to variety of antibiotics, serum as well as macrophages (p<0.05). Zingerone treatment significantly reduced cell surface hydrophobicity, alginate and LPS production (p<0.05). Zingerone treated cells showed significant decrease in TNF-α and MIP-2 cytokine production as compared to non-treated cells. Coupled with this, reduction in the production of extracellular protective matrix and modulation of chemical structure of LPS was also observed by scanning electron microscopy and liquid chromatography-mass spectrometric (LC-MS) respectively. Zingerone significantly influence surface structure of P. aeruginosa which contributes towards enhanced susceptibility to antibiotics and innate immune system.

SIGNIFICANCE: Use of phytochemicals may prove to be a novel therapeutic approach by enhancing susceptibility of pathogenic microorganisms to antibiotics and immune system. Zingerone has proved to be one such agent which can be employed as a potential anti-virulent drug candidate against P. aeruginosa infections.

Print Options

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2020 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.