n/a
Article Publish Status: FREE
Abstract Title:

The Effects of Puerarin on Autophagy Through Regulating of the PERK/eIF2α/ATF4 Signaling Pathway Influences Renal Function in Diabetic Nephropathy.

Abstract Source:

Diabetes Metab Syndr Obes. 2020 ;13:2583-2592. Epub 2020 Jul 20. PMID: 32765037

Abstract Author(s):

Xiaohui Xu, Biao Chen, Qichun Huang, Yani Wu, Tao Liang

Article Affiliation:

Xiaohui Xu

Abstract:

Background and Purpose: Autophagy is the main protective mechanism against aging in podocytes, which are terminally differentiated cells that have a very limited capacity for mitosis and self-renewal. Here, a streptozotocin-induced DN C57BL/6 mouse model was used to investigate the effects of puerarin on the modulation of autophagy under conditions associated with endoplasmic reticulum stress (ERS). In addition, this study aimed to identify the potential underlying molecular mechanisms.

Methods and Results: DN C57BL/6 mouse model was induced by streptozotocin (150 mg/kg) injection. The mice were administered rapamycin and puerarin, respectively, daily for up to 8 weeks. After the serum and kidney samples were collected, the fasting blood glucose (FBG), parameters of renal function, histomorphology, and the podocyte functional proteins were analyzed. Moreover, the autophagy markers and the expressions of PERK/ATF4 pathway were studied in kidney. Results found that the FBG level in DN mice was significantly higher than in normal mice. Compared with DN model mice, puerarin-treated mice showed an increased expression of podocyte functional proteins, including nephrin, podocin, and podocalyxin. Furthermore, the pathology and structure alterations were improved by treatment with rapamycin and puerarin compared with the DN control. The results indicated an elevated level of autophagy in rapamycin and puerarin groups compared with the DN model, as demonstrated by the upregulated expression of autophagy markers Beclin-1, LC3II, and Atg5, and downregulated p62 expression. In addition, the levels of PERK, eIF2α, and ATF4 were reduced in the DN model, which was partially, but significantly, prevented by rapamycin and puerarin.

Conclusion: This study emphasizes the renal-protective effects of puerarin in DN mice, particularly in the modulation of autophagy under ERS conditions, which may be associated with activation of the PERK/eIF2α/ATF4 signaling pathway. Therefore, PERK may be a potential target for DN treatment.

Study Type : Animal Study

Print Options


Key Research Topics

Sayer Ji
Founder of GreenMedInfo.com

Subscribe to our informative Newsletter & get Nature's Evidence-Based Pharmacy

Our newsletter serves 500,000 with essential news, research & healthy tips, daily.

Download Now

500+ pages of Natural Medicine Alternatives and Information.

This website is for information purposes only. By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition. Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional.

© Copyright 2008-2021 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.